To: City of Port Coquitlam
Attention: Jason Daviduk, P. Eng.
Cc: Melony Burton, AScT, MBA
Reference: Kingsway Avenue Conceptual Design - Traffic Study and Planning Memorandum Final
From: Neal Cormack, P. Eng., ENV SP
Cc: Chris Boit, P.Eng.

Date: February 13, 2020
Project No.: 32340

1.0 Introduction

1.1 Background

ISL Engineering and Land Services Ltd. (ISL) was retained by the City of Port Coquitlam (the City) to develop a suitable concept (interim and ultimate) for the road cross section along Kingsway Avenue between Tyner Street and Mary Hill Bypass (Highway 7B), as shown in Figure 1.1, to provide an efficient movement of vehicles, people, and goods. According to the City's 2013 Master Transportation Plan, Kingsway Avenue is classified as an arterial, which connects Westwood Street to Mary Hill Bypass. Currently, the study corridor has two travel lanes (one lane in each direction) with turning bays and lanes (dedicated and shared). It is surrounded mainly by industrial developments on both sides, and it is designated as a truck route as well as part of TransLink's Major Road Network (MRN).

Figure 1.1 Study Area

1.2 Objective

This Traffic Study and Planning Memorandum is intended to support and use as input for the engineering work of roadway cross-section design. The objectives of this technical memorandum are to assess the existing traffic condition (2019) and to identify the future traffic performances of the study corridor, and hence to recommend and justify the preferred design criteria for the interim (2029, 10-year) and ultimate (2044, 25-year) horizons.

1.3 Study Intersection

There are six key intersections located along the study corridor, namely from west to east with road classification and designation of the side street and existing traffic control type:

- Tyner Street (local road) - stop-controlled
- McLean Avenue (arterial) - signalized
- Coast Meridian Overpass / Broadway Street (both arterials and part of truck route and MRN) - signalized
- Langan Avenue (collector) - stop-controlled
- Coast Meridian Road (collector) - stop-controlled
- Mary Hill Bypass (highway) - signalized (managed by BC Ministry of Transportation and Infrastructure)

Along with the above intersection characteristics, the existing lane configuration can be found in Figure 1.3.

Figure 1.3 Existing Intersection Traffic Control and Lane Configuration (as of June 2019)

2.0 Existing Traffic Volume (2019)

Multi-year (2016-2018) traffic counts of the study intersections, including the number of crossing pedestrians and cyclists, and corridor sections were collected from the City. For this study, all surveyed traffic volumes were projected to 2019, using the same annual background growth rate from recent traffic studies of nearby redevelopments. A linear annual growth rate of 1.5% was applied to the available data, and the estimated 2019 traffic volumes along the study corridor were balanced based on the existence of industrial driveways between intersections. The 2019 turning movement volumes during the weekday AM and PM peak hours are shown in
Table 2.

Table 22019 Estimated Traffic Volume

Study Intersection (along Kingsway Ave)	Eastbound			Westbound			Northbound			Southbound			Total
	Left	Thru	Right										
AM													
Tyner St	-	495	95	50	645	-	65	-	75	-	-	-	1,425
McLean Ave	10	459	40	485	660	15	-	-	290	11	5	5	1,980
CMO / Broadway St	245	300	215	40	479	25	109	270	35	70	525	572	2,885
Langan Ave	-	430	25	55	495	-	5	-	60	-	-	-	1,070
Coast Meridian Rd	-	410	80	65	535	-	40	-	35	-	-	-	1,165
Mary Hill Byp	255	135	95	20	60	25	90	1,085	20	135	2,005	735	4,660
PM													
Tyner St	-	725	65	80	800	-	55	-	75	-	-	-	1,800
McLean Ave	5	799	55	355	665	3	-	-	376	5	10	5	2,278
CMO / Broadway St	570	420	190	485	497	160	46	375	350	45	395	480	4,013
Langan Ave	-	530	15	60	545	-	10	-	75	-	-	-	1,235
Coast Meridian Rd	-	570	45	55	550	-	55	-	90	-	-	-	1,365
Mary Hill Byp	400	305	55	40	85	170	55	2,300	20	30	1,110	445	5,015

Based on the link volumes data provided by the City, approximately 5% and 7% of total traffic volumes along the study corridor were heavy vehicles during the weekday AM and PM peak hours, respectively. The same heavy vehicle percentages were applied for all traffic analyses in this study.

3.0 Future Development Traffic

Based on the available information, the following four major traffic generators in the vicinity of the study corridor will be developed and opened within the interim 10-year horizon (numbers are in reference to Figure 1.1):

1. Port Coquitlam Recreation Complex along with Mixed-use Buildings at 2150 Wilson Avenue - consists of 120,286 square feet (sq. ft.) gross floor area (GFA) of a new recreation complex (to be replaced the existing one), plus 328 high-rise residential condominiums and 45 senior living units. As the development is located out of the study area, based on a previous traffic study, only a portion (about 25\%) of the generated trips will be travelling through the study corridor to enter/exit the development site.
2. Saputo Dairy Plant (Industrial) at 1855/1889/1925 Kingsway Avenue - consists of 292,393 sq. ft. GFA of warehouse space and $5,508 \mathrm{sq}$. ft. GFA of auxiliary office space.
3. Industrial / Commercial Development at 1845 Kingsway Avenue - consists of 13 wholesale units, each unit with 12,620 sq. ft. GFA of warehouse space and $4,610 \mathrm{sq} . \mathrm{ft}$. GFA of auxiliary office space.
4. Industrial Strata at $1545 / 1575 / 1579$ Kingsway Avenue - consists of $178,420 \mathrm{sq}$. ft. GFA of warehouse space and $55,783 \mathrm{sq}$. ft. GFA of auxiliary office space.

To forecast vehicle trips generated inbound and outbound from future industrial and mixed-use developments during both weekday AM and PM peak periods, when unavailable from recent traffic studies, the Institute of Transportation Engineers (ITE) Trip Generation Manual (10 Edition) was considered. The ITE trips rates were established using Land Use Code 150 (Warehousing) and 712 (Small Office Building), similar to recent study findings. Associated directional splits (percentages of inbound and outbound traffic) for each land use type were also extracted from the ITE Manual. Table 3 shows the summary of inbound and outbound generated traffic volumes during both peak hours for future major developments. In total, the four major developments will generate 420 and 615 vehicle trips during weekday AM and PM peak hours, respectively.

Table 3 Peak Hour Trip Generation from Future Major Developments

Regarding the trip distributions of future developments, it is understood that City's new recreation complex along with mixed-use buildings would have different traffic patterns comparing with the industrial developments within the study area. Using the existing traffic patterns and engineering judgements, the following assumptions were made to distribute the generated trips appropriately:

- As Port Coquitlam Recreation Complex will generate and attract various trip purposes, the generated trips (25% of total trips) were distributed based on the existing traffic volumes at the study intersections, which is as follows during both weekday peak periods:
- Inbound traffic - 50\% from north through Coast Meridian Overpass, 40% from east through Mary Hill Bypass, and 10% from south through Broadway Street
- Outbound traffic - 40% to north through Coast Meridian Overpass, 35% to east through Mary Hill Bypass, 20\% to south through Broadway Street, and 5\% to south through Tyner Street
- For the three future industrial developments:
- During the AM peak - 50\% from/to east through Mary Hill Bypass, 20% from/to northwest through Kingsway Avenue, 15\% from/to south through Broadway Street, 10\% from/to southwest through McLean Avenue (and Tyner Street due to right-out configuration at McLean Avenue), and 5\% from/to north through Coast Meridian Overpass
- During the PM peak hour - 40% from/to east through Mary Hill Bypass, 35% from/to south through Broadway Street, 15\% from/to northwest through Kingsway Avenue, 5\% from/to southwest through McLean Avenue (and Tyner Street due to right-out configuration at McLean Avenue), and 5\% from/to north through Coast Meridian Overpass

4.0 Future Traffic Volume (2029 and 2044)

To estimate the future traffic conditions, 10-year (2029) and 25-year (2044) horizon traffic patterns were studied for this cross-section design. In order to consider background traffic growth that is not generated by future developments, a linear annual growth rate of 1.5% was also applied to 2019 traffic volumes. Existing traffic volumes with background traffic growth and development generated trips were summed to determine the combined traffic volumes for both weekday peak hours of the horizon year 2029 and 2044, as shown in Table 4.1 and Table 4.2.

Table 4.1 2029 Estimated Traffic Volume

Study Intersection (along Kingsway Ave)	EB			WB			NB			SB			Total
	L	T	R	L	T	R	L	T	R	L	T	R	
AM													
Tyner St	-	662	110	60	818	-	75	-	108	-	-	-	1,832
McLean Ave	15	626	57	561	937	20	-	-	344	15	10	10	2,595
CMO / Broadway St	306	411	267	53	664	31	161	315	48	89	605	698	3,648
Langan Ave	-	555	30	66	704	-	12	-	72	-	-	-	1,375
Coast Meridian Rd	-	524	97	75	766	-	55	-	45	-	-	-	1,563
Mary Hill Byp	324	171	119	25	72	30	120	1,250	25	160	2,310	979	5,586
PM													
Tyner St	-	969	75	95	1,098	-	65	-	95	-	-	-	2,396
McLean Ave	10	1,169	79	414	984	5	-	-	436	10	15	10	3,133
CMO / Broadway St	716	598	302	574	679	189	99	435	409	55	455	631	5,141
Langan Ave	-	741	22	72	745	-	16	-	90	-	-	-	1,686
Coast Meridian Rd	-	807	61	65	735	-	67	-	105	-	-	-	1,840
Mary Hill Byp	538	406	81	50	114	200	77	2,645	25	35	1,280	590	6,041

Table 4.2 2044 Estimated Traffic Volume

Study Intersection (along Kingsway Ave)	EB			WB			NB			SB			Total
	L	T	R	L	T	R	L	T	R	L	T	R	
AM													
Tyner St	-	777	135	70	963	-	90	-	123	-	-	-	2,157
McLean Ave	15	731	62	671	1,087	25	-	-	409	15	10	10	3,035
CMO / Broadway St	361	481	317	58	769	36	181	375	53	104	725	828	4,288
Langan Ave	-	655	35	81	819	-	12	-	87	-	-	-	1,527
Coast Meridian Rd	-	614	112	90	886	-	60	-	50	-	-	-	1,813
Mary Hill Byp	384	201	144	30	87	35	140	1,495	30	190	2,760	1,144	6,641
PM													
Tyner St	-	1,134	90	110	1,278	-	80	-	110	-	-	-	2,801
McLean Ave	10	1,349	94	494	1,134	5	-	-	521	10	15	10	3,643
CMO / Broadway St	841	693	347	684	789	224	109	520	489	65	545	741	6,046
Langan Ave	-	861	27	87	865	-	16	-	105	-	-	-	1,961
Coast Meridian Rd	-	932	71	80	860	-	82	-	125	-	-	-	2,150
Mary Hill Byp	628	471	96	55	134	235	92	3,165	30	45	1,530	690	7,171

[^0]
5.0 Capacity Analysis

To determine the future roadway cross sections and lane configurations at the study intersections and corridor, intersection capacity analyses were conducted.

5.1 Link Volume and Corridor Capacity

To identify the future road cross sections, the estimated traffic demands (link traffic volumes) were compared with the existing study corridor capacity. Highway Capacity Software (HCS) was used to calculate volume over capacity (V/C) ratio for the existing and future demands considering the existing lane configurations. In HCS, V/C ratios are calculated based on various inputs, such as length of the road, the number of through lanes, lane width, two-way hourly volume, link volume directional split, and heavy truck percentage. It is assumed that if the V/C ratio surpasses 0.9 , road improvement should be considered.

To better assess the traffic conditions, the study corridor was divided into five sections for HCS. Due to the short spacing between McLean Avenue and Coast Meridian Overpass / Broadway Street, it was assumed that the crosssection design of this section of the corridor should be determined from intersection operation performance and queue length analysis. Therefore, the peak hour link volumes, capacities, and V/C ratios for the other four road sections in each study horizon can be found in Table 5.1 as well as Figures 5.1, Figure 5.2, and Figure 5.3.

Table 5.1 Kingsway Avenue Link Capacity, Peak Hour Volume, and V/C ratio for 2019, 2029, and 2044

Road Section (along Kingsway Ave) Between	Link Capacity (VEH/HR)	Peak Hour	2019				2029				2044			
			Link Volume			V/C	Link Volume			V/C	Link Volume			V/C
			EB	WB	2-way		EB	WB	2-way		EB	WB	2-way	
Tyner St \& McLean Ave	2,945	AM	570	695	1,265	0.43	770	878	1,648	0.56	900	1,033	1,933	0.66
		PM	800	880	1,680	0.57	1,063	1,193	2,256	0.77	1,243	1,388	2,631	0.90
CMO / Broadway St \& Langan Ave	2,899	AM	405	544	949	0.33	548	748	1,296	0.44	638	863	1,501	0.51
		PM	815	1,142	1,957	0.67	1,062	1,442	2,504	0.86	1,247	1,697	2,944	1.01
Langan Ave \& Coast Meridian Rd	2,920	AM	490	550	1,040	0.36	627	770	1,397	0.48	742	900	1,642	0.56
		PM	605	605	1,210	0.41	831	817	1,648	0.56	966	952	1,918	0.66
Coast Meridian Rd \& Mary Hill Byp	2,922	AM	445	600	1,045	0.36	569	841	1,400	0.48	664	976	1,640	0.56
		PM	660	605	1265	0.43	912	800	1,712	0.59	1,057	940	1,997	0.68

As shown in the above table, it is expected that with the existing lane configuration, the road capacity at all four road sections along Kingsway Avenue would be able to meet the traffic demands until 2029.

In 2044, during the weekday PM peak hour, the road section between Tyner Street and McLean Avenue would have a V/C ratio at the threshold (0.90), and the section between Coast Meridian Overpass / Broadway Street and Langan Avenue would have a capacity deficiency (V/C > 1.00).

[^1]

Figure 5.1 2019 Peak Hour Link Volume and V/C Ratio

Figure 5.2 2029 Peak Hour Link Volume and V/C Ratio

Figure 5.3 2044 Peak Hour Link Volume and V/C Ratio

5.2 Annual Average Daily Traffic (AADT)

Annual Average Daily Traffic (AADT) volumes for each section of Kingsway Avenue, based on the available daily traffic volumes provided by the City and using 1.5% linear annual traffic growth rate, were determined and shown in Table 5.2.
Table 5.2 AADT Volume for 2019, 2029, and 2044

Road Section (along Kingsway Ave) Between	Annual Average Daily Traffic Volume (VEH/DAY)		
	2019	2029	2044
Tyner St \& McLean Ave	15,850	18,120	21,530
CMO / Broadway St \& Langan Ave	24,470	31,300	36,800
Langan Ave \& Coast Meridian Rd	15,130	20,600	23,980
Coast Meridian Rd \& Mary Hill Byp	13,850	15,830	18,810

In accordance with design guidelines (bylaws) for other municipalities in British Columbia and Alberta, when the demand reaches approximately 20,000 to 35,000 vehicles per day, improvements are required to upgrade the roadway cross section from two to four lanes. This is also consistent with Table 5, as no road widening is recommended by 2029, except the section between Coast Meridian Overpass / Broadway Street and Langan Avenue. In 2044, the first three sections (that is, from Tyner Street to Coast Meridian Road) are warranted for road widening.

5.3 Intersection Operation Performance (Existing Traffic Control and Lane Configuration)

To further identify the need for road improvement, traffic operation performances at the study intersections were analyzed using Synchro 9 software, which is based on the standard methods of the Highway Capacity Manual (HCM). In HCM, measures of effectiveness were developed, including control delay (second per vehicle). Level of Service (LOS) is defined based on the average control delay (Table 5.3).

Table 5.3 LOS Definition for Signalized and Unsignalized Intersections in HCM

Traffic Control	LOS	A	B	C	D	E	F
Signalized	Delay	$0-10$	$10-20$	$20-35$	$35-55$	$55-80$	>80
$n n$	(SEC/VEH)	$0-10$	$10-15$	$15-25$	$25-35$	$35-50$	>50

For capacity analysis in urban areas, LOS D or better is generally considered as acceptable LOS for both signalized and unsignalized intersections. The latest signal timing sheets, as provided by the City as well as BC Ministry of Transportation and Infrastructure, were used for this study; however, signal optimization was applied for all traffic signal analyses in 2029 and 2044.

The overall intersection and individual movement performances for both weekday AM and PM peak hours in existing condition (2019), along 10-year (2029) and 25-year (2044) horizons, under existing traffic control and lane configuration, were determined and consolidated in Table 5.4. The average delay, LOS, and critical movements at LOS E or F were determined. For the critical movements, EB, WB, NB, and SB correspond to eastbound, westbound, northbound, and southbound, respectively. L, T, and R imply left-turn, through, and right-turn movements. The discussion of intersection performance for each horizon year is also provided in the following sections.

Table 5.4 Synchro Result for Existing Condition (2019), 10-year Horizon (2029), and 25-year Horizon (2044)

Study Intersection along Kingsway Ave (Control Type)	Peak Hour	2019			2029			2044		
		Delay (s)	LOS	Critical Movement	Delay (s)	LOS	Critical Movement	Delay (s)	LOS	Critical Movement
Tyner St (stop-controlled)	AM	5	A	NBLR	21	C	NBLR	63	F	NBLR
	PM	12	B	NBLR	71	F	NBLR	686	F	NBLR
McLean Ave (signalized)	AM	12	B	-	17	B	-	24	C	-
	PM	15	B	-	27	C	-	52	D	EBT, EBR, WBL
CMO / Broadway St (signalized)	AM	53	D	EBL, WBT, NBL, SBR	106	F	EBL, EBT, WBT, NBL, SBR	158	F	$\begin{gathered} \text { EBL, EBT, WBT, NBL, } \\ \text { SBR } \end{gathered}$
	PM	45	D	EBL, EBT, NBL, NBT, SBT	114	F	EBL, EBT, WBL, WBT, NBL, SBT, SBR	176	F	EBL, EBT, WBL, WBT, NBL, SBT, SBR
Langan Ave (stop-controlled)	AM	2	A	-	2	A	-	3	A	-
	PM	2	A	-	3	A	-	6	A	NBLR
Coast Meridian Rd (stop-controlled)	AM	2	A	-	5	A	NBLR	13	B	NBLR
	PM	5	A	NBLR	26	D	NBLR	80	F	NBLR
Mary Hill Byp (signalized)	AM	42	D	EBL, EBT, WBL, WBT, NBL, SBT	80	E	EBL, EBT, WBL, WBT, NBL, SBL, SBT	154	F	EBL, EBT, WBL, WBT, NBL, SBL, SBT, SBR
	PM	89	F	EBL, EBT, WBL, WBT, WBR, NBT, SBL	159	F	EBL, EBT, WBL, WBT, WBR, NBT, SBL	237	F	EBL, EBT, WBL, WBT, WBR, NBL, NBT, SBL

[^2]- Existing Condition (2019) - All study intersections are currently operating at an acceptable LOS (D or better) during both weekday peak hours, except for the Mary Hill Bypass intersection that is operating inefficiently (LOS F) during the PM peak. Northbound movements at the Tyner Street intersection and Coast Meridian Road intersection were found to be critical (LOS E or F) during both peaks, which is due to high Kingsway Avenue east-west traffic volumes. At the intersection of Coast Meridian Overpass / Broadway Street and Kingsway Avenue, some movements were identified to be critical, such as eastbound and northbound left turns during both peaks. East-west approaches at the Mary Hill Bypass intersection are not operating efficiently during any of the peak hours.
- 10-year Horizon (2029) - The Tyner Street intersection will operate poorly (LOS F) during the PM peak hour. The intersection of Coast Meridian Overpass / Broadway Street and Kingsway Avenue will not operate efficiently during both peaks (LOS F), and more critical movements were identified at this intersection. Northbound movement at the Coast Meridian Road intersection will become critical in the AM peaks as well. The Mary Hill Bypass intersection performance will fail during both peaks.
- 25-year Horizon (2044) - Most of the study intersections will have a similar operation performance as in 2029. The Tyner Street and Kingsway Avenue intersection will operate poorly during both peak hours. In addition, the LOS at the Coast Meridian Road intersection will become F during the PM peak by 2044.

5.4 Spillback and Weaving Analysis

Due to short spacing between two intersections and relatively high traffic demands in all directions, queue spillback and vehicle weaving could be concerns in the 2029 and 2044 horizon years. Hence, further traffic (spillback and weaving) analyses were considered and focused on two particular areas, intersections less than 100 metres (m) spacing along the study corridor: Tyner Street with Kelly Avenue (future roundabout) and McLean Avenue with Coast Meridian Overpass / Broadway Street.

Referring to Table 5.4, the Tyner Street and Kingsway Avenue intersection will operate poorly in the horizon years with the existing traffic control and lane configuration. Two potential configuration options (signalization and roundabout) for the study intersection were assessed, taking into account the future one-lane roundabout at Kelly Avenue. Upon further traffic analysis, it was determined that upstream spillbacks ($95^{\text {th }}$ percentile) from both intersections (Tyner Street eastbound and Kelly Avenue northbound approaches) could occur, limiting available movements at roundabouts. In 2044, 12 m (approximately two vehicles in length) of queue spillback was identified from the eastbound direction of Tyner Street. However, based on the overall intersection performance, signalization (LOS C or better) operates better than a roundabout (LOS F) during both peak periods and horizon years.

To further understand the road section between McLean Avenue and Coast Meridian Overpass / Broadway Street, weaving analysis was conducted for the study peak periods and horizon years. Both individual weaving movements (eastbound and westbound) through Kingsway Avenue between McLean Avenue and Coast Meridian Overpass were assessed. According to HCS, it was found that weaving operation performances were LOS D or better for both directions, with the exception of weekday PM peak hour in 2044 for eastbound movement with LOS E; that is, mainly northbound right turn from McLean Avenue to eastbound left turn to Coast Meridian Overpass. Therefore, potential improvements, such as modifying intersection signals and geometric design, could be considered.

5.5 Queue Length Analysis

Queue length analysis was conducted using SimTraffic (traffic microsimulation of Synchro) for the existing condition (2019) and 10-year horizon (2029) under existing traffic control and lane configuration. Due to poor intersection performance for most of the study intersections along Kingsway Avenue in 2044, the queue length analysis cannot be reflected in SimTraffic.

Table 5.5 and Table 5.6 show the analysis results, in 2019 and 2029 for average and $95^{\text {th }}$ percentile queue length, followed by a discussion for each horizon year. The existing storage lengths are also provided.

Table 5.5 SimTraffic Result for Existing Condition (2019)

Study Intersection (along Kingsway Ave)	Peak Hour	Measure of Effectiveness [Queue Length] (m)	Kingsway Avenue				Side Street			
			EB		WB		NB		SB	
			L	R	L	R	L	R	L	R
Tyner St	Storage Length (m)			25						
	AM	Average		0						
		95th \%ile		4						
	PM	Average		0						
		95th \%ile		0						
McLean Ave	Storage Length (m)		20		25					
	AM	Average	2		28					
		95th \%ile	9		55					
	PM	Average	1		26					
		95th \%ile	5		50					
CMO / Broadway St	Storage Length (m)		50	25	35	30	70	70	45^{1}	55
	AM	Average	33	16	12	5	27	0	15	1
		95th \%ile	55	55	43	36	51	0	44	15
	PM	Average	89	32	68	34	15	14	10	0
		95th \%ile	132	74	79	95	40	60	23	0
Langan Ave	Storage Length (m)									
	AM	Average								
		95th \%ile								
	PM	Average								
		95th \%ile								
Coast Meridian Rd	Storage Length (m)				25					
	AM	Average			7					
		95th \%ile			17					
	PM	Average			6					
		95th \%ile			16					
Mary Hill Byp	Storage Length (m)			40^{2}	40	25	45	120	45	120
	AM	Average		15	4	0	23	0	49	114
		95th \%ile		65	11	0	56	2	92	220
	PM	Average		36	8	8	12	0	16	4
		95th \%ile		102	22	41	51	0	49	19

Note:
1 - Through movements block the turning bays
2 - Left-turn movements block the right-turn bay

Accordingly, none of the stop-controlled intersections has storage capacity deficiencies. Based on $95^{\text {th }}$ percentilequeue, westbound left-turn bay at McLean Avenue intersection and east-west turning bays (left and right turns) at the Coast Meridian Overpass / Broadway Street intersection have inadequate storage lengths during both weekday peak hours. Due to the significantly high volume of left-turn vehicles at the Mary Hill Bypass intersection, the eastbound right-turn bay is blocked by through traffic queues, considering the average queue length in both peak hours.

[^3]Table 5.6 SimTraffic Result for 10-year Horizon (2029) - Existing Lane Configuration

Study Intersection (along Kingsway Ave)	Peak Hour	Measure of Effectiveness [Queue Length] (m)	Kingsway Avenue				Side Street			
			EB		WB		NB		SB	
			L	R	L	R	L	R	L	R
Tyner St	Storage Length (m)			25						
	AM	Average		4						
		95th \%ile		15						
	PM	Average		8			256			
		95th \%ile		33	189		358			
McLean Ave	Storage Length (m)		20		25					
	AM	Average	3		39					
		95th \%ile	11		65					
	PM	Average	3		41			275		
		95th \%ile	17		67			338		
CMO / Broadway St	Storage Length (m)		50	25	35	30	70	70	45	55
	AM	Average	41	32	25	18	93	1	22	3
		95th \%ile	64	73	75	70	120	19	61	30
	PM	Average	72	33	67	31	53	31	13	1
		95th \%ile	95	74	80	90	104	91	32	10
Langan Ave	Storage Length (m)				125					
	AM	Average								
		95th \%ile			169					
	PM	Average								
		95th \%ile								
Coast Meridian Rd	Storage Length (m)				25					
	AM	Average			11					
		95th \%ile			36					
	PM	Average			9					
		95th \%ile			18					
Mary Hill Byp	Storage Length (m)			40	40	25	45	120	45	120
	AM	Average		60	5	2	35	0	62	130
		95th \%ile		117	14	16	70	0	96	215
	PM	Average		35	20	29	15	0	28	14
		95th \%ile		100	63	77	58	0	72	43

It is expected that more turning movements would have capacity deficiencies by 2029 , including:

- Tyner Street - capacity deficiency for the eastbound right-turn lane during the weekday PM peak hour, and substantial queue lengths in the westbound and northbound directions, which will affect the driveways and nearby intersections (such as Hawthorne Avenue at Tyner Street).
- McLean Avenue - the eastbound left-turn bay could be blocked by through movements, and it is expected that the westbound queue could affect the upstream intersection (Coast Meridian Overpass / Broadway Street) performance, during both peaks. The westbound approach queue could be extended further upstream and affect the traffic operation of the Langan Avenue intersection during the AM peak. Long northbound queue length is expected during the PM peak.
- Langan Avenue - westbound queue could spill over to Coast Meridian Road (upstream) in the AM peak.
- Coast Meridian Road - capacity deficiency of the westbound left-turn bay during the AM peak.

[^4]ISL is proud to be: Bullfrog Powered | An Aon Best Small and Medium Employer in Canada - Platinum Level

As most of the turning movements would have capacity deficiencies by 2029, it is expected that in 2044 , the results would get even worse.

6.0 Signal Warrant Analysis

The Transportation Association of Canada (TAC) Canadian Traffic Signal Warrant was used to determine whether a traffic signal is warranted for all study stop-controlled intersections during the existing condition and study horizon years (2029 and 2044). The TAC Warrant uses cumulative factors methodology that includes a cross-product relationship of the vehicle-vehicle conflict and the vehicle-pedestrian conflict. It also considers various local factors such as pedestrian demographics, pedestrian exposure, as well as roadway and vehicle characteristics.

The warrant analysis requires two hours each for the morning, midday, and afternoon peak periods to calculate an average hourly volume. For conservative measures, it was assumed that peak hour volumes are the same for whole peak periods (two hours), and noon peak volumes were estimated as the average between the weekday AM and PM peak hours. The warrant score of 100 is the threshold for traffic signalization. The summary of the analyses is as follows:

- 2019 - The intersection of Tyner Street at Kingsway Avenue could be warranted for signalization, as its warrant score (122) is over 100. Other stop-controlled intersections were not found to be warranted for a traffic signal. However, as requested by the City, ISL completed additional traffic operation analysis and determined that traffic signal implementation would increase delay on Kingsway Avenue and could lead to vehicle spillover at Kelly Avenue. Therefore, a right in / right out access is proposed.
- 2029 - The intersection of Coast Meridian Road at Kingsway Avenue could be warranted for signalization with warrant score of 118 (over 100), and the traffic analysis also showed long delays for northbound vehicles to find a gap to turn into Kingsway Avenue.
- 2044 - In addition to the intersection at Coast Meridian Road, the intersection of Langan Avenue at Kingsway Avenue could be warranted for signalization considering traffic signal at Coast Meridian Road intersection. However, the warrant score was 110, which is not significantly higher than the threshold.

7.0 Traffic Performance Improvement

7.1 2029 Proposed Traffic Control and Lane Configuration

As indicated throughout Section 5.0, it is expected that with the existing lane configuration, the road capacity at all four road sections along Kingsway Avenue would be able to meet the traffic demands in 2029; therefore, no road widening is proposed for the overall study corridor. According to the capacity and signal warrant analyses, the following improvements could be considered to improve the traffic operations along the study corridor by 2029 (10year horizon):

- At Tyner Street:
- Restrict the westbound and northbound left-turn movements and implement a right in / right out access configuration.
- At McLean Avenue:
- Add an additional dedicated westbound left-turn lane (dual left-turn lanes). Modify the southbound downstream lane (south leg) from one to two through lanes for about 70 m .
- Add an additional northbound right-turn lane (dual right-turn lanes) and convert from yieldcontrolled to signal.
islengineering.com
ISL is proud to be: Bullfrog Powered | An Aon Best Small and Medium Employer in Canada - Platinum Level
- Coordinate with traffic signals at Coast Meridian Overpass / Broadway Street, especially between northbound right-turn and eastbound left-turn movements (to Coast Meridian Overpass).
- At Coast Meridian Overpass / Broadway Street:
- Add an additional eastbound through lane from east of McLean Avenue for about 100m past Coast Meridian Overpass.
- Add an additional westbound through lane west of Langan Avenue.
- Add an additional southbound right-turn lane (dual right-turn lanes) and convert from yieldcontrolled to signal.
- At Coast Meridian Road:
- Convert intersection from stop-controlled to full traffic signal.

7.2 2044 Proposed Traffic Control and Lane Configuration

In 2044 (25-year horizon), particularly during the weekday PM peak hour (where some performances are at and over the threshold - capacity deficiency), it is recommended that four-lane cross sections (two lanes in each direction) could be considered, given the land availability. According to the capacity analysis results, the following additional improvements could be considered to improve the traffic operations along the study corridor for the ultimate stage:

- At Tyner Street:
- Remove the stop sign for Tyner Street northbound right-turn movement and make it free flow with a dedicated receiving lane on Kingsway Avenue eastbound.
- At McLean Avenue:
- Add an additional westbound through lane (west of McLean Avenue) by changing the pavement markings only.
- At Coast Meridian Overpass / Broadway Street:
- Add an additional westbound left turn lane (dual left turn lanes) and convert from protectedpermissive to protected-only phase.
- Add an additional eastbound through lane (east of Coast meridian Overpass) by changing the pavement markings only.

[^5]ISL is proud to be: Bullfrog Powered | An Aon Best Small and Medium Employer in Canada - Platinum Level
$+$

8.0 Geometric Design Criteria

The geometric design criteria for the roadways within the project limits are summarized in Table 8.1. These design criteria were based on the Transportation Association of Canada (TAC) standards and City of Port Coquitlam Bylaws (2241 and 4078).

Table 8.1 Geometric Design Criteria

Item	Existing Condition	PoCo (TAC) Criteria	Achieved Criteria	Reference
Legal Classification	Arterial (MRN)	Arterial	Arterial	-
Posted Speed	50 to $60 \mathrm{~km} / \mathrm{h}$	-	50 to $60 \mathrm{~km} / \mathrm{h}$	-
Design Speed	-	$60 \mathrm{~km} / \mathrm{h}$	$60 \mathrm{~km} / \mathrm{h}$	PoCo': "C" 17
Basic Lanes	2 to 4	-	4 to 5	-
Minimum Radius	-	130 m	Existing	PoCo': "C" 17
Minimum K Factor (Sag) Minimum K Factor (Crest)		$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & \text { PoCo': "C" } 18 \\ & \text { PoCo1: "C" } 18 \end{aligned}$
Maximum Grade Minimum Grade		$\begin{gathered} 9 \% \\ 0.3 \% \end{gathered}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & \text { PoCo1: "C" } 17 \\ & \text { PoCo': "C" } 18 \end{aligned}$
Max. Super Elevation	-	6 \%	TBD	PoCo': "C" 17
Minimum Stopping Sight Distance	-	85 m	TBD	PoCo': "C" 17
Lane Width	3 to 4.5 m	(3.3 to 3.7 m)	3.3 to 3.7 m	TAC:C4 9
Left-Turn Lane Width	3 to 3.5 m	(3 to 3.5 m)	3.2 to 4.2 m	TAC: C4 13-15
Two-Way Left-Turn Lane Width	3.5 m	3.5 m or same as travel lane	3.3 to 4.4 m	TAC: C8 8.6.2
Sidewalk Width	0 to 3.5 m	0 to 1.5 m	1.5 to 1.8 m	PoCo': "C" 25
Parking Lane Width	$\sim 3.5 \mathrm{~m}$	2.7 m	2.6 to 2.8 m	PoCo: 7
Multi-use Path Width	-	(3 to 6 m)	3 m	$\begin{gathered} \text { TAC: C5 } \\ \text { 5.3.1.4 } \end{gathered}$
Barrier Curb Width Boulevard Width Utility Strip Width	$\begin{gathered} 0.15 \mathrm{~m} \\ - \\ \sim 1 \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} 0.15 \mathrm{~m} \\ (2 \text { to } 3 \mathrm{~m}) \\ 0.6 \text { to } 1.5 \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} 0.15 \mathrm{~m} \\ - \\ 0.4 \text { to } 4.2 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { MMCD: C4 } \\ \text { TAC:C4 } 39 \\ \text { PoCo': "D" } 81^{2} \end{gathered}$
Curb Return Radii	-	9 m	8 to 9 m	PoCo': "C" 19
Design Vehicle	WB-20	WB-20	WB-20	Past Studies

[^6]ISL is proud to be: Bullfrog Powered | An Aon Best Small and Medium Employer in Canada - Platinum Level

0

9.0 Concept Design Plan

The Concept Plan for Kingsway Avenue was based on the 2029 and 2044 Traffic Modelling and is shown in the following Figures:

Figures 9.1 through 9.4 shows the conceptual design plan for the interim (2029) deign.
Figures 9.5 through 9.8 shows typical cross sections for the interim (2029) and ultimate (2044) design.
Figures 9.9 through 9.12 shows the conceptual design plan for the ultimate (2044) design.

9.1 Existing Cross Sections

The existing Kingsway Avenue cross section varies along the corridor and the roadway width varies from 14.0 m to 14.6 m measured face of curb to face of curb. Referring to Table 9.1, for ease of reference the existing cross sections can be broken down in the following segments.

Table 9.1 Existing Cross Sections

			BC Hydro	Port Coquitlam												
Year	of Pavement	of Way	Multi-Use Path	Utility Strip	Sidewalk	North Curb	Parking Lane	Travel Lane	Travel Lane	Way Left-Turn Lane	Travel Lane	Travel Lane	Parking Lane	South Curb	Sidewalk	Utility Strip
Existing Sections																
Tyner Street to West CMBC Driveway																
2019	14.00	20.00		1.00	3.00	0.15	3.00		4.00		4.00		3.00	0.15		1.70
West CMBC Driveway to Broadway Street																
2019	14.60	20.00		3.40		0.15	3.30		4.00		4.00		3.30	0.15	1.50	0.20
Broadway Street to West Sysco Driveway																
2019	14.00	20.00		1.20	3.00	0.15	3.00		4.00		4.00		3.00	0.15	1.50	
West Sysco Driveway to Mary Hill Bypass																
2019	14.00	20.00		2.40	1.80	0.15	2.90		4.00		3.50	3.60		0.15	1.50	

9.1.1 Tyner Street to West CMBC Driveway

This segment includes a total road width of 14.0 m and includes one 7.0 m travel lane in each direction with parking permitted on both sides of the roadway. A 3.0 m sidewalk exists on the north side only.

9.1.2 West CMBC Driveway to Broadway Street

This segment includes a total road width of 14.6 m and one 7.3 m travel lane in each direction with parking permitted on both sides of the roadway. A 1.5 m sidewalk exists on the south side only.

9.1.3 Broadway Street to West Sysco Driveway

This segment includes a total road width of 14.0 m and includes one 7.0 m travel lane in each direction with parking permitted on both sides of the roadway. The only segment that does not permit parking is west of Langan Avenue. A 3.0 m sidewalk exists on the north side and a 1.5 m sidewalk exists on the south side.

[^7]
9.1.4 West Sysco Driveway to Mary Hill Bypass

This segment includes a total road width of 14.0 m and includes one 6.9 m travel lane on the north side and two travel lanes (3.5 m and 3.6 m) on the south side. Parking is permitted on the north side only. A 1.8 m sidewalk exists on the north side and a 1.5 m sidewalk exists on the south side.

9.2 Proposed Interim and Ultimate Cross Sections

The intent of this conceptual design is to provide a more consistent cross section that can be applied to Kingsway Avenue which meets the interim and future needs of vehicles, cyclists and pedestrians.

In order to accommodate the future traffic requirements at 2044, it is recommended that Kingsway Avenue be constructed as a minimum four-lane undivided arterial roadway with two (3.3 m minimum) travel lanes in each direction. In the interim design, in order to accommodate the 2029 traffic volumes, it is recommended that Kingsway Avenue be constructed with a two way left turn lane in the center of the roadway with one travel lane in each direction. Utilizing the existing 20.0 m right of way, it is recommended that a $14.0 \mathrm{~m}-14.4 \mathrm{~m}$ road width be constructed in order to accommodate parking on both sides of the roadway where possible and a minimum 1.5 m sidewalk on the south side of the roadway. A 3.0 m multi-use path is proposed on the north side located within BC Hydro's right of way. This is generally the philosophy being considered for Kingsway Avenue, where the ultimate cross section can be accommodated within the proposed $14.0 \mathrm{~m}-14.4 \mathrm{~m}$ interim cross section road width with only milling and overlay and minor pavement marking changes being required for the future transition.

However, referring to Table 9.2, due to the constraints along the corridor and for ease of reference the proposed interim and ultimate cross sections can be broken down in the following segments.

Table 9.2 Proposed Interim (2029) and Ultimate (2044) Cross Sections

			BC Hydro	Port Coquitlam												
Horizon Year	of Pavement	of Way	Multi-Use Path	Utility Strip	Sidewalk	North Curb	Parking Lane	Travel Lane	Travel Lane	Way Left-Turn Lane	Travel Lane	Travel Lane	Parking Lane	South Curb	Sidewalk	Utility Strip
Proposed Options																
Tyner Street to Broadway Street																
2029	14.40	20.00	3.00	3.10		0.15		3.70		4.40	3.50		2.80	0.15	1.80	0.40
2044	14.40	20.00	3.00	3.10		0.15		3.70	3.50		3.50	3.70		0.15	1.80	0.40
Broadway Street to Langan Ave																
2029	14.00	20.00	3.00	2.45		0.15		3.70	3.30	3.30	3.70			0.15	1.80	1.45
2044	14.00	20.00	3.00	2.45		0.15		3.70	3.30		3.30	3.70		0.15	1.80	1.45
Langan Ave to West Sysco Driveway																
2029	14.00	20.00	3.00	4.20		0.15		3.70		4.20	3.50		2.60	0.15	1.50	
2044	14.00	20.00	3.00	4.20		0.15		3.70	3.30		3.30	3.70		0.15	1.50	
West Sysco Driveway to Mary Hill Bypass																
2029	14.00	20.00	3.00	4.20		0.15			3.70	3.30	3.30	3.70		0.15	1.50	
2044	14.00	20.00	3.00	4.20		0.15		3.70	3.30		3.30	3.70		0.15	1.50	

[^8]ISL is proud to be: Bullfrog Powered | An Aon Best Small and Medium Employer in Canada - Platinum Level

9.2.1 Tyner Street to Broadway Street

Referring to Figures 9.1 and 9.5, Tyner Street and Kingsway Avenue would be constructed as a right in / right out intersection. This segment includes a total road width of 14.4 m and requires the south curb to be moved approximately 0.5 m to accommodate the proposed 1.8 m sidewalk. One travel lane is proposed in each direction (3.7 m and 3.5 m) with parking permitted $(2.8 \mathrm{~m})$ on the south side of the roadway. We have made provision for parking (2.6 m pull outs) on the north side where possible, without requiring relocation of the BC Hydro transmission lines, which is cost prohibitive.

A 4.4 m two way left turn lane is also provided. A 3.0 m multi-use path is proposed on the north side located within BC Hydro's right of way and a 1.8 m sidewalk is proposed on the south side to incorporate the existing power poles into the sidewalk construction and still allow a minimum of 1.2 m of unobstructed sidewalk for pedestrians.

Referring to Figure 9.5 and 9.9, the ultimate concept design would require the removal of the 4.4 m two way left turn lane and replacement with two (3.5 and 3.7 m) travel lanes in each direction. No curb modifications would be required.

9.2.2 McLean Avenue Intersection

Referring to Figure 9.2, the intersection of McLean Avenue with Kingsway Avenue will require traffic signal modifications to accommodate roadway widening on the south side of the intersection. Dual westbound left turn lanes are also being provided. An additional eastbound right-turn lane (dual right-turn lanes) are proposed including converting the movement from yield-controlled to signalization to avoid weaving issues. An additional eastbound through lane is also proposed.

Referring to Figure 9.10, the ultimate concept design west of McLean Avenue would require removing the 4.4 m two way left turn lane and replacement with two (3.5 and 3.7 m) travel lanes in each direction. No other modifications would be required.

9.2.3 Coast Meridian Overpass / Broadway Street Intersection

Referring to Figure 9.2, the intersection of Coast Meridian Overpass / Broadway Street with Kingsway Avenue will require traffic signal modifications to accommodate roadway widening on the north and south sides of the intersection. Dual eastbound left turn lanes are being provided including an additional eastbound through lane. Although only a corresponding single westbound left turn lane is technically required at the interim stage, for constructability reasons, we are proposing the future dual left turn lane is provided at the interim stage. An additional southbound right-turn lane (dual right-turn lanes) from the Coast Meridian Overpass are proposed including converting the movement from yield-controlled to signalization to avoid weaving issues.

Referring to Figure 9.10, the ultimate concept design east of Broadway Street would require an additional eastbound through lane which would be achieved by changing the pavement markings only. No other modifications would be required.

9.2.4 Broadway Street to Langan Avenue

Referring to Figure 9.3, this segment includes a total road width of 14.0 m with two travel lanes (3.7 m and 3.3 m) on the north side of the roadway only and one travel lane (3.7 m) on the south side of the roadway. A 3.3 m two way left turn lane is also provided, which is less than desirable but matches the existing condition. A 3.0 m multi-use path is proposed on the north side located within BC Hydro's right of way and a 1.8 m sidewalk is proposed on the south side. It is anticipated that 5 Hydro Poles will have to be relocated in order to accommodate the roadway widening.

Referring to Figure 9.6 and 9.11, the ultimate concept design east of Broadway Street would require removing the 3.3 m two way left turn lane and replacement with two ultimate (3.5 and 3.7 m) travel lanes in each direction. No other modifications would be required

9.2.5 Langan Avenue to West Sysco Driveway

Referring to Figure 9.3, this segment includes a total road width of 14.0 m with one travel lane in each direction with parking permitted $(2.6 \mathrm{~m})$ on the south side of the roadway only. A 4.2 m two way left turn lane is also provided. A 3.0 m multi-use path is proposed on the north side located within BC Hydro's right of way and the existing curb and gutter and 1.5 m sidewalk is proposed to remain on the south side. The intersection of Coast Meridian Road and Kingsway Avenue would be constructed as a signalized intersection with a dedicated westbound left turn lane.

Referring to Figure 9.7 and 9.11 , the ultimate concept design would require removing the 4.2 m two way left turn lane and replacement with two ultimate (3.3 and 3.7 m) travel lanes in each direction. No other modifications would be required.

9.2.6 West Sysco Driveway to Mary Hill Bypass

Referring to Figure 9.4 and 9.7 , this segment includes a total road width of 14.0 m with one 3.7 m travel lane on the north side and two travel lanes (3.3 m and 3.7 m) on the south side. A 4.2 m two way left turn lane is also provided. A 3.0 m multi-use path is proposed on the north side located within BC Hydro's right of way and the existing curb and gutter and 1.5 m sidewalk is proposed to remain on the south side. The existing sidewalk on the south side of Kingsway Avenue east of the Mary Hill Town Pantry, Chevron and Tim Horton's entrance would be extended to tie into the Mary Hill Bypass Intersection.

Referring to Figure 9.12, the ultimate concept design would require removing the 4.2 m two way left turn lane and replacement with two ultimate (3.3 and 3.7 m) travel lanes in each direction. No other modifications would be required.

9.3 Storage Bay and Taper Length

Storage bay lengths are measured from the stop bar to the start of the deceleration taper. As per the TAC Geometric Design Guide 2017 Section 9.17.4.3, the minimum storage bay length for a left turn lane is 15 m plus the deceleration taper length. The taper length is measured from the edge of the through lane at the start of the taper to the beginning of a full-width, left-turn lane at the end of the taper. As per TAC Geometric Design Guide 2017 Table 9.17.2, the minimum bay taper length for a left turn lane at a design speed of $60 \mathrm{~km} / \mathrm{h}$ is at a taper ratio of $10: 1$ to the lane width. All required storage bay and taper lengths are summarized in table 9.3 below.

[^9]Table 9.3 Summary of Storage Bay and Taper Lengths (Year 2029 Horizon)

Study Intersection (along Kingsway Avenue)	95th Percentile Queue Length (m)	Storage Bay	Taper	Comments
		Length (m)	Length (m)	
McLean Avenue				
EBL	18.5	37	37	Proposed single left turn. Meets design guidelines.
WBL	67.0	134	39	Proposed dual left turn. Meets design guidelines.
NBR	60.0	118	N/A	Proposed dual right turn. Meets design guidelines.
Coast Meridian Overpass / Broadway Street				
EBL	114.0	171	44	Proposed dual left turn. Meets design guidelines.
EBR	70.9	74	36	Proposed single right turn. Meets design guidelines.
WBL	71.1	75	62	Proposed dual left turn. Meets design guidelines.
WBR	78.5	96	60	Proposed single right turn. Meets design guidelines.
NBL	51.9	60	38	Proposed single left turn. Meets design guidelines.
NBR	72.8	72	51	Existing condition to remain.
SBL	29.0	48	46	Existing condition to remain.
SBR	107.8	99	36	Proposed dual right turn. Meets design guidelines.
Langan Avenue				
N/A	N/A	N/A	N/A	N/A
Coast Meridian Road				
WBL	28.5	35	50	Proposed single left turn. Meets design guidelines.

[^10]ISL is proud to be: Bullfrog Powered | An Aon Best Small and Medium Employer in Canada - Platinum Level

10.0 Opinion of Probable Cost

The estimated opinion of probable cost based on the interim conceptual design provided is approximately $\$ 5.96 \mathrm{M}$ which includes a 25% contingency. The opinion of probable cost includes power pole relocation and relocation of existing street lights. There are a number of areas along the corridor which are not currently illuminated that the City may want to consider as part of the detailed design. These costs are not currently included.

Also, east of CMO the 3 phase power poles will have to be relocated (north PL). We have assumed they can be located on the south side of the R/W, at the back of sidewalk. We suspect they cannot be relocated to the north, as there is likely a minimum separation requirement from the transmission lines. If they cannot be relocated to the south, an option would be to underground the power. However this would cost an additional $\$ 900 \mathrm{k}$. These costs are not currently included and should be considered during detailed design

Please refer to Table 10 'Class C Cost Estimate’ below for the opinion of probable cost.
Table 10 Class C Cost Estimate

[^11]Integrated Expertise. Locally Delivered.

$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	SSMP	description	UNIT OF MEASURE	UNIT PRICE	Tyner to McLean		CMO Intersection		CMO to Maryhill		tOTAL QUANTITY	total cost	
					QTY	cost	QTY	cost	QTY	cost			
1.0	MMCD 033020 - CONCRETE WALKS, CURBS AND GUTTERS												
1.1	1.4.5	Concrete Sidewalk (MMCD C2) (south side)	Square Meter	\$ 125	1325	\$ 165,625	615	\$ 76,875	265	\$ 33,125	2205	\$	275,625
1.2	$\begin{aligned} & 1.4 .3 \\ & 1.4 .4 \end{aligned}$	Concrete Curb \& Gutter (MMCD C5)	Linear Meter	\$ 120	1850	\$ 222,000	1530	\$ 183,600	1217	\$ 146,040	4597	\$	551,640
1.3	1.4.6	150 mm Depth Driveway Crossings (MMCD C7)	Square Meter	\$ 150	200	\$ 30,000		\$	107	\$ 16,050	307	\$	46,050
1.4	$\begin{aligned} & \hline 1.4 .3 \\ & 1.4 .4 \\ & \hline \end{aligned}$	Concrete Median infill (concrete)	Linear Meter	\$ 120	50	\$ 6,000	450	\$ 54,000		\$	500	\$	60,000
2.0	MmCD 311101 - CLEARING AND GRUBBING												
2.1	1.4.1	Hedge Removal (Area in Plan, not elevation)	Square Meter	\$ 10	900	\$ 9,000	300	\$ 3,000	260	\$ 2,600	1460	\$	14,600
3.0	MMCD 311141 - SHRUB AND TREE PRESERVATION												
3.1	1.3.1s	Hedge and Tree Preservation	Lump Sum	\$ 5,000	1	\$ 5,000	1	\$ 5,000	1	\$ 5,000	3	\$	15,000
4.0	MMCD 312413 - ROADWAY EXCAVATION, EMBANKMENT AND COMPACTION												
4.1	$\begin{aligned} & 1.8 .2 \\ & 1.8 .5 \\ & \hline \end{aligned}$	Common Excavation - Off-Site Disposal	Cubic Meter	\$ 75	1636.5	\$ 122,738	1825	\$ 136,838	1964	\$ 147,285	5425	\$	406,860
4.2	$\begin{aligned} & 1.8 .2 \\ & 1.8 .5 \\ & \hline \end{aligned}$	Common Excavation - Off-Site Disposal MUP	Cubic Meter	\$ $\quad 75$	886.5	\$ 66,488	389	\$ 29,138	1100	\$ 82,485	2375	\$	178,110
4.3	1.8.5	Common Excavation - Off-Site Disposal - Concrete (South Curb)	Cubic Meter	\$ 150	200	\$ 30,000	411	\$ 61,718	120	\$ 17,925	731	\$	109,643
4.4		OPTIONAL - Overexcavation - Off-Site Disposal (Includes MMCD Granular Base Backfill)	Cubic Meter	150	65	\$ 9,750	91	\$ 13,684	98	\$ 14,729	254	\$	38,162
5.0	MMCD 321116.1 - GRANULAR SUBBASE												
5.1	$\begin{array}{r} 1.4 .3 \\ 1.4 .4 \\ \hline \end{array}$	300 mm Depth MMCD Select Granular Subbase For Full Depth Pavement	Tonne	\$ 50	1169.7	\$ 58,485	1758.9	\$ 87,945	2074	\$ 103,686	5002	\$	250,116
5.2	$\begin{array}{r} 1.4 .3 \\ 1.4 .4 \\ \hline \end{array}$	100 mm Depth MMCD Select Granular Subbase For Driveway Reconstruction	Tonne	50	90	\$ 4,500		\$ -	24	\$ 1,177	114	\$	5,677
6.0	MMCD 321123 - GRANULAR BASE												
6.1	$\begin{aligned} & 1.4 .2 \\ & \text { 1.4.3 } \\ & \hline \end{aligned}$	150 mm Depth MMCD Granular Base For Full Depth Pavement	Tonne	\$ 50	725.85	\$ 36,293	879	\$ 43,973	1037	\$ 51,843	2642	\$	132,108
6.2	$\begin{aligned} & 1.4 .2 \\ & 1.4 .3 \\ & \hline \end{aligned}$	250mm Depth MMCD Granular Base For MUP	Tonne	50	1625	\$ 81,263	712	\$ 35,613	2016	\$ 100,815	4354	\$	217,690
6.3	$\begin{array}{r} 1.4 .2 \\ \hline 1.4 .3 \\ \hline \end{array}$	150 mm Depth MMCD Granular Base For South Sidewalk	Tonne	50	450	\$ 22,500	320	\$ 16,022	26	\$ 1,297	796	\$	39,818
7.0	MMCD 321213.1 - ASPHALT TACK COAT												
7.1	1.5.1	Asphalt Tack Coat	Square Meter	\$ 1	1820	\$ 1,820	2665	\$ 2,665	3142	\$ 3,142	7627	\$	7,627
8.0	MMCD 321216 - HOT-MIX ASPHALT CONCRETE PAVING												
8.1	$\begin{aligned} & \hline 1.5 .1 \\ & 1.5 .2 \\ & \hline \end{aligned}$	50mm Depth Machine Laid MMCD Upper Course \#1 (Widening)	Tonne	\$ 120	364	\$ 43,652	326	\$ 39,176	385	\$ 46,187	1075	\$	129,014
8.2	$\begin{aligned} & 1.5 .1 \\ & 1.5 .2 \\ & \hline \end{aligned}$	50 mm Depth Machine Laid MMCD Lower Course \#1 (Widening)	Tonne	\$ 120	514	\$ 61,652	326	\$ 39,176	385	\$ 46,187	1225	\$	147,014
8.3	$\begin{array}{r} 1.0 .2 \\ \hline 1.5 .1 \\ 1.5 .2 \\ \hline \end{array}$	50 mm MMCD Upper Course \#1 - MUP	Tonne	\$ 125	375	\$ 46,875	159	\$ 19,830	449	\$ 56,136	983	\$	122,840
9.0	MMCD 321723 - PAINTED PAVEMENT MARKINGS												
9.1	1.5.2	All Permanent painted markings	Lump Sum		1	\$ 20,000	1	\$ 15,000	1	\$ 15,000	3	\$	50,000
9.2	1.5.2	Eradication of existing painted markings	Lump Sum		1	\$ 15,000	1	\$ 10,000	1	\$ 10,000	3	\$	35,000
9.3	1.5.4	All Signs	Lump Sum		1	\$ 5,000	1		1	\$ 3,000	3	\$	8,000
10.0	MMCD 329121 - TOPSOIL AND FINISH GRADING												
10.1	1.4.1	100 mm Depth Topsoil	Cubic Meter	\$ 100	150	\$ 15,000	50	\$ 5,000	150	\$ 15,000	350	\$	35,000
11.0	MMCD 329223 - SODDING												
11.1	1.8.1	Sodding	Square Meter	\$ 12	750	\$ 9,000	200	\$ 2,400	1000	\$ 12,000	1950	\$	23,400
12.0	MMCD 334001 - STORM SEWERS												
12.1	1.6 .5	200 mm PVC DR28 CB Lead	Linear Meter	\$ 400	475	\$ 190,000	300	\$ 120,000	680	\$ 272,000	1455	\$	582,000
13.0	MMCD 334401 - MANHOLES AND CATCH BASINS												
13.1	1.6 .5	Catch Basins (MMCD S11)	Each	\$ 3,600	28	\$ 100,800	20	\$ 72,000	40	\$ 144,000	88	\$	316,800
14.0	MMCD 344113 -TRAFFIC SIGNALS												
\#REF!	1.9.1	Traffic Signal modification (McLean Ave)	L.S	\$ 50,000			1	\$ 50,000		\$ -	1	\$	50,000
\#REF!	1.9.1	Traffic Signals (CMO)	L.S	\$ 100,000		\$	1	\$ 100,000		\$ -	1	\$	100,000
\#REF!	1.9.1	Traffic Signals (Coast Meridian Rd)	L.S	\$ 200,000		\$ -		\$ -	1	\$ 200,000	1	\$	200,000
15.0	MMCD 265601 - Roadway Lighting												
15.1	1.8.1	$\begin{array}{\|l} \hline \text { Street Lighting } \\ \text { (north and South) } \end{array}$	each	\$ 7,500	6	\$ 45,000	10	\$ 75,000	10	\$ 75,000	26	\$	195,000
15.2		Relocation of Power pole	each	\$ 10,000	5	\$ 50,000	7	\$ 70,000	22	\$ 220,000	34	\$	340,000
		TOTAL COST (ROUNDED TO NEAREST \$1,000)			\$	1,474,000	\$	1,368,000	\$	1,842,000	\$		4,683,000
			25\% CONTIGENCY		\$	368,500	\$	342,000	\$	460,500	\$		1,170,750
		CLASS C COST ESTIMATE			\$	1,842,500	\$	1,710,000	\$	2,302,500	\$		5,853,750

islengineering.com

[^0]: islengineering.com

[^1]: islengineering.com

[^2]: islengineering.com

[^3]: islengineering.com

[^4]: islengineering.com

[^5]: islengineering.com

[^6]: islengineering.com

[^7]: islengineering.com

[^8]: islengineering.com

[^9]: islengineering.com

[^10]: islengineering.com

[^11]: islengineering.com

