
Housing Development Traffic Impact Study

Prepared for:

Peak Tower Development

Prepared by:

84a moody street port moody, bc canada v3h 2p5

604.936.6190 604.936.6175 www.cts-bc.com

Date: September 28, 2020 File No: 7163-01

BY EMAIL

Peak Tower Development c/o Mr. Barry Weih WA Architects Ltd. #301, 1444 Alberni Street Vancouver, BC V6G 2Z4

Dear Mr. Weih,

Re: Housing Development, Port Coquitlam – Revised FINAL Traffic Impact Study

Creative Transportation Solutions Ltd. (CTS) is pleased to submit this Revised FINAL Traffic Impact Study for a proposed housing development located at the intersection of Gately Avenue at Kingsway Avenue in the City of Port Coquitlam. The primary objectives of this assignment were:

- To conduct a traffic impact assessment for the proposed housing development based on the most recent project data, and
- 2. To document the site conditions, data, analyses, conclusions and recommendation (if any) in a report that meets the requirements of the City of Port Coquitlam.

TABLE OF CONTENTS

1.0 1.1	Study Site	
1.2	Study Area	2
1.3	Road Network	4
1.4	Transport Modal Infrastructure	7
1.5	Study Periods	g
2.0	BASE TRAFFIC VOLUMES	10
3.0 3.1	SITE TRAFFIC VOLUMES	
3.2	Site Trip Distribution	20
4.0	BASE + SITE TRAFFIC VOLUMES	26
5.0 5.1	TRAFFIC ANALYSIS	
6.0	ACCESS AND SIGHT LINES	45
6.1	Sight Lines	45
6.2	Access	45
7.0 7.1	PARKING AND LOADING	
	Vehicle Parking	
7.2	Bicycle Parking	
7.3	Loading	51
8.0	SUMMARY & CONCLUSIONS	52
9.0	RECOMMENDATIONS	54

LIST OF FIGURES

FIGURE 1 STUDY AREA AND ADJACENT ROAD NETWORK
FIGURE 2 EXISTING LANING CONFIGURATION
FIGURE 3 EXISTING BUS STOP AND BICYCLE ROUTE LOCATIONS
FIGURE 4 2020 WEEKDAY AM PEAK HOUR BASE TRAFFIC VOLUMES1
FIGURE 5 2020 WEEKDAY PM PEAK HOUR BASE TRAFFIC VOLUMES12
FIGURE 6 2022 WEEKDAY AM PEAK HOUR BASE TRAFFIC VOLUMES1
FIGURE 7 2022 WEEKDAY PM PEAK HOUR BASE TRAFFIC VOLUMES14
FIGURE 8 2025 WEEKDAY AM PEAK HOUR BASE TRAFFIC VOLUMES15
FIGURE 9 2025 WEEKDAY PM PEAK HOUR BASE TRAFFIC VOLUMES16
FIGURE 10 2030 WEEKDAY AM PEAK HOUR BASE TRAFFIC VOLUMES17
FIGURE 11 2030 WEEKDAY PM PEAK HOUR BASE TRAFFIC VOLUMES18
FIGURE 12 2022 WEEKDAY AM PEAK HOUR SITE GENERATED TRAFFIC VOLUMES (PHASE 1)22
FIGURE 13 2022 WEEKDAY PM PEAK HOUR SITE GENERATED TRAFFIC VOLUMES (PHASE 1)2
FIGURE 14 2025 WEEKDAY AM PEAK HOUR SITE GENERATION TRAFFIC VOLUMES (PHASE 2)24
FIGURE 15 2025 WEEKDAY PM PEAK HOUR SITE GENERATION TRAFFIC VOLUMES (PHASE 2)29
FIGURE 16 2022 WEEKDAY AM PEAK HOUR BASE + PHASE 1 TRAFFIC VOLUMES27
FIGURE 17 2022 WEEKDAY PM PEAK HOUR BASE + PHASE 1 TRAFFIC VOLUMES28
FIGURE 18 2025 WEEDAY AM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES29
FIGURE 19 2025 WEEKDAY PM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES30
FIGURE 20 2025 WEEKDAY AM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES WITH CHINE AVENUE CONNECTION3
FIGURE 21 2025 WEEKDAY PM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES WITH CHINE AVENUE CONNECTION32
FIGURE 22 2030 WEEKDAY AM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES WITH CHINE AVENUE CONNECTION3
FIGURE 23 2030 WEEKDAY PM PEAK HOUR BASE + SITE TRAFFIC VOLUMES 2030 WEEKDAY PM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES WITH CHINE AVENUE CONNECTION34
♥! !!!1E ^1 F!10F 00 1 1F0 10 1

FIGURE 24 GATELY AVENUE AT KINGSWAY AVENUE – WESTBOUND LEFT TURN	
LANE/RECEIVING LANE	47
FIGURE 25 GATELY AVENUE AT KINGSWAY AVENUE – RIGHT-IN/RIGHT-OUT	48
FIGURE 26 CHINE AVENUE CONNECTION	49

LIST OF TABLES

TABLE 1 SUMMARY OF SITE GENERATED VEHICLE TRIPS – PHASE 1 AND PHASE 2	219
TABLE 2 TRIP DISTRIBUTION PERCENTAGES FOR PHASE 1 AND PHASE 2 SITE GENERATED TRAFFIC	20
TABLE 3 TRIP DISTRIBUTION VEHICLE VOLUMES FOR NEW SITE GENERATED TRAFFIC (PHASE 1)	20
TABLE 4 TRIP DISTRIBUTION VEHICLE VOLUMES FOR NEW SITE GENERATED TRAFFIC (PHASE 2)	21
TABLE 5 SIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY	36
TABLE 6 UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY	39
TABLE 7 VEHICLE PARKING SUMMARY	50

1.0 BACKGROUND

1.1 Study Site

The proposed housing development site is located in the south quadrant of the intersection of Gately Avenue at Kingsway Avenue in the City of Port Coquitlam. Phase 1 of the development will have 302 apartment units and 4,000 ft² of day care space on eleven properties:

- 2428, 2456, 2458, 2460, 2466, 2470, 2492 Kingsway Avenue;
- 2420, 2450 Ticehurst Lane; and
- 2455, 2473, 2475 Gately Avenue.

The legal descriptions are:

- Strata Lot B, Plan NWS1714, District Lot 379, New Westminster District;
- Strata Lot D, Plan NWS1714, District Lot 379, New Westminster District;
- Strata Lot C, Plan NWS1714, District Lot 379, New Westminster District;
- Strata Lot E, Plan NWS1714, District Lot 379, New Westminster District;
- Strata Lot F, Plan NWS1714, District Lot 379, New Westminster District;
- Lot 1, Plan LMP15261, District Lot 379, New Westminster District;
- Lot 14, Plan NWP3106, District Lot 379, New Westminster District;
- Lot A, Plan NWP3106, District Lot 379, New Westminster District;
- Lot 16, Plan NWP3106, District Lot 379, New Westminster District;
- Lot 2, Plan NWP8602, District Lot 379, New Westminster District; and
- Plan NWP8602, District Lot 367, New Westminster District.

Phase 2 of the housing development could have up to 450 apartment units on two properties:

- 2532 Kingsway Avenue; and
- 2466 Gately Avenue.

The legal descriptions are:

- Lot 22, Plan NWP3106, District Lot 379, New Westminster District; and
- Lot 125, Plan NWP63714, District Lot 379, New Westminster District.

1.2 Study Area

The study area is bounded by Dixon Street to the west, Kingsway Avenue to the north and the site property line to the south & east. **FIGURE 1** illustrates the study area and adjacent road network. A copy of the site plan referenced by this Traffic Impact Study is included as **APPENDIX A**.

The following intersections are included in the traffic impact assessment:

- 1) Gately Avenue at Kingsway Avenue (unsignalized);
- 2) Dixon Street at Kingsway Avenue (signalized);
- 3) Westwood Street at Kingsway Avenue (signalized); and
- 4) Maple Street at Kingsway Avenue (signalized).

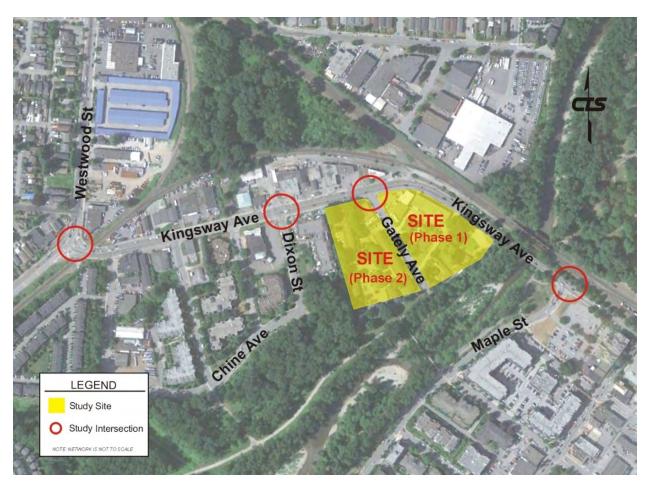


FIGURE 1
STUDY AREA AND ADJACENT ROAD NETWORK

1.3 Road Network

A brief description of each study intersection follows:

Westwood Street at Kingsway Avenue

- Westwood Street intersects Kingsway Avenue at a signalized "T" intersection.
- On the north approach there is a left turn lane and through lane. On the south approach there is a through lane and right turn lane. On the east approach there is a left turn lane and right turn lane.
- The signal is coordinated with the CP Rail signal to the east.
- There are signalized pedestrian crosswalks and sidewalks on the north and east approaches.
- The intersection is illuminated.
- The posted speed is 50 km/h.
- On-street parking is prohibited on Westwood Street and Kingsway Avenue in proximity to the intersection.

Dixon Street at Kingsway Avenue

- Dixon Street intersects Kingsway Avenue at a signalized "+" intersection.
- On the north approach there is a shared left turn/through/right turn lane. On the south approach there is a shared left turn/through/right turn lane. On the east approach there is a shared left turn/through lane and shared through/right turn lane. On the west approach there a shared left turn/through lane and shared through/right turn lane.
- There are signalized pedestrian crosswalks and sidewalks on all approaches.
- The intersection is illuminated.
- The posted speed is 50 km/h.
- On-street parking is prohibited on Westwood Street and Kingsway Avenue in proximity to the intersection.
- On-street parking is controlled by time of day along Kingsway Avenue i.e. NO PARKING / 7AM–9AM / 3PM-7PM / MON-FRI and 1 HOUR PARKING / 9AM-3PM / MON-FRI.

Gately Avenue at Kingsway Avenue

- Gately Avenue intersects Kingsway Avenue at an unsignalized "T" intersection.
 Gately Avenue is STOP controlled.
- On the south approach there is a shared left turn/right turn lane. On the east approach there is a shared left turn/through lane and a through lane. On the west approach there a shared through/right turn lane.
- There are sidewalks on all approaches.
- The intersection is illuminated.
- The posted speed is 50 km/h.

- On-street parking is prohibited on Westwood Street and Kingsway Avenue in proximity to the intersection.
- On-street parking is controlled by time of day along Kingsway Avenue i.e. NO PARKING / 7AM–9AM / 3PM-7PM / MON-FRI and 1 HOUR PARKING / 9AM-3PM / MON-FRI.

Maple Street at Kingsway Avenue

- Maple Street intersects Kingsway Avenue at a signalized "T" intersection.
- On the south approach there is a left turn lane and right turn lane. On the east approach there is a left turn lane and a through lane. On the west approach there a shared through/right turn lane.
- There are signalized pedestrian crosswalks and sidewalks on all approaches.
- The intersection is illuminated.
- The posted speed is 50 km/h.
- On-street parking is prohibited on Maple Street and Kingsway Avenue in proximity to the intersection.

The existing laning configuration for the study intersections is illustrated by **FIGURE 2**.

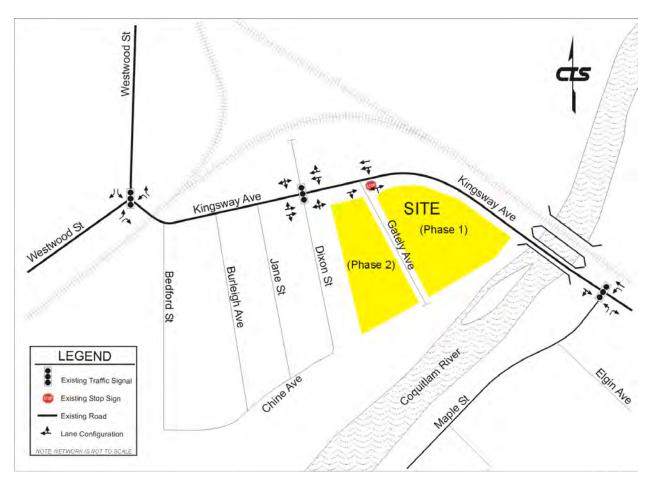


FIGURE 2
EXISTING LANING CONFIGURATION

1.4 Transport Modal Infrastructure

Pedestrian Network

There are concrete sidewalks on Kingsway Avenue. However, there are currently no sidewalks around the proposed housing development site on Gately Avenue.

Bicycle Network

Currently, there are no bicycle routes within the study area. However, with reference to the City of Port Coquitlam 2013 Master Transportation Plan, there is a multi-use pathway proposed along Kingsway Avenue from Wilson Avenue to the Fraser River and a signed on-street bicycle route along Wilson Avenue linking the multi-use pathway along Kingsway Avenue with the existing multi-use pathway network along the Coquitlam River. There is a new signed on-street bicycle route along Bedford Street and Chine Avenue linking to the existing multi-use pathway network along the Coquitlam River. **FIGURE 3** illustrates the existing and proposed bicycle network within the study area.

Public Transit

The site is well serviced by transit. The proposed housing development is located approximately 130 meters from bus stops on Kingsway Avenue. Bus stop locations are illustrated by **FIGURE 3**. The nearby bus stops are served by the following routes:

- Route #173 Coquitlam Central Station/Cedar. Service is every 10 to 15 minutes Monday to Friday during peak periods.
- Route #174 Coquitlam Central Station/Rocklin. Service is every 10 to 15 minutes Monday to Friday during peak periods.
- Route #175 Coquitlam Central Station/Meridian. Service only in the morning and afternoon peak hours every 30 minutes.

A transit route diagram for each transit route is included as **APPENDIX B**.

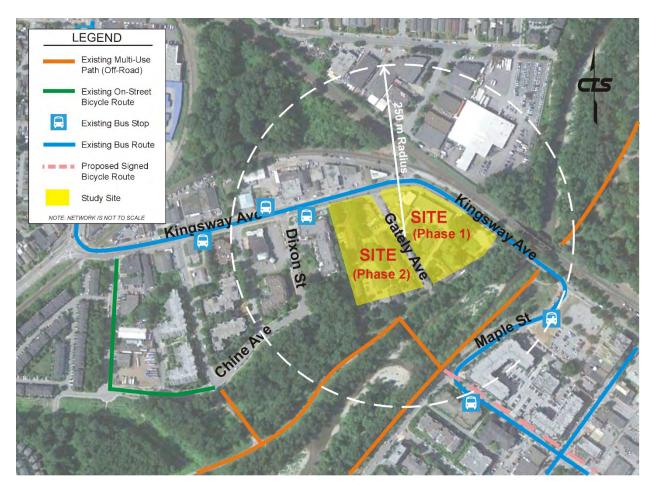


FIGURE 3
EXISTING BUS STOP AND BICYCLE ROUTE LOCATIONS

1.5 Study Periods

The weekday AM and PM peak hours were selected as the design hours for this study.

- Weekday AM Peak Hour 0745 to 0845
- Weekday PM Peak Hour 1545 to 1645

The following horizon years were selected for this study:

- 2020 (existing base traffic conditions);
- 2022 (future base traffic conditions without the development);
- 2025 (future base traffic conditions without the development);
- 2030 (future base traffic conditions without the development);
- 2022 (future base traffic conditions + Phase 1 site generated traffic volume);
- 2025 (future base traffic conditions + Phase 1 & Phase 2 site generated traffic volume); and
- 2030 (5 years post build-out).

2.0 BASE TRAFFIC VOLUMES

2020 Base Traffic Volumes

CTS conducted intersection traffic turning movement counts on Tuesday, January 21, 2020 from 0700 to 0900 and 1500 to 1800 in order to capture both the AM and PM peak periods. The traffic turning movement count data was tabulated and reviewed to ensure data integrity and validity. The tabulated traffic turning movement count data sheets are included as **APPENDIX C**. **FIGURE 4** and **FIGURE 5** illustrate the weekday AM and PM peak hour traffic volumes, respectively.

The following design hours were selected based on the peak hours observed at the study intersections:

- Weekday AM Peak Hour (0745 to 0845)
- Weekday PM Peak Hour (1545 to 1645)

2022 Future Base Traffic Volumes

Year 2022 is anticipated to be the year of build-out for the proposed housing development – Phase 1. The 2020 base traffic volumes were factored up by a traffic volume growth rate of 2.0% per annum (simple straight line) to represent the future base year 2022 traffic volumes. **FIGURE 6** and **FIGURE 7** illustrate the 2022 weekday AM and PM peak hour traffic volume future base scenarios with no development traffic, respectively.

2025 Future Base Traffic Volumes

Year 2025 is anticipated to be the year for build-out for the proposed housing development – Phase 1 and Phase 2. The 2020 base traffic volumes were factored up by a traffic volume growth rate of 2.0% per annum (simple straight line) to represent the future base year 2025 traffic volumes. **FIGURE 8** and **FIGURE 9** illustrate the 2025 weekday AM and PM peak hour traffic volume future base scenarios with no development traffic, respectively.

2030 Future Base Traffic Volumes

Year 2030 is anticipated to be 5 years post build-out for the proposed housing development – Phase 1 and Phase 2. The 2020 base traffic volumes were factored up by a traffic volume growth rate of 2.0% per annum (simple straight line) to represent the future base year 2030 traffic volumes. **FIGURE 10** and **FIGURE 11** lustrate the 2030 weekday AM and PM peak hour traffic volume future base scenarios with no development traffic, respectively.

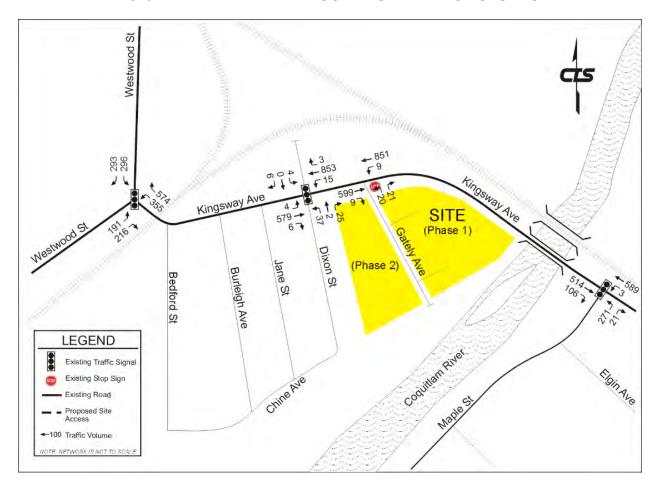


FIGURE 4
2020 WEEKDAY AM PEAK HOUR BASE TRAFFIC VOLUMES

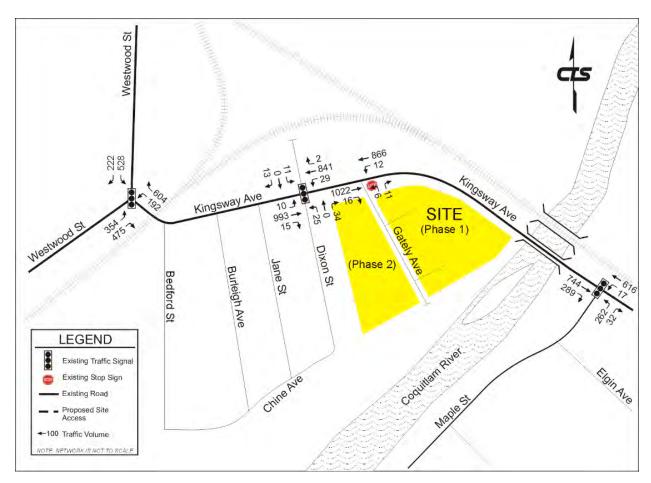


FIGURE 5
2020 WEEKDAY PM PEAK HOUR BASE TRAFFIC VOLUMES

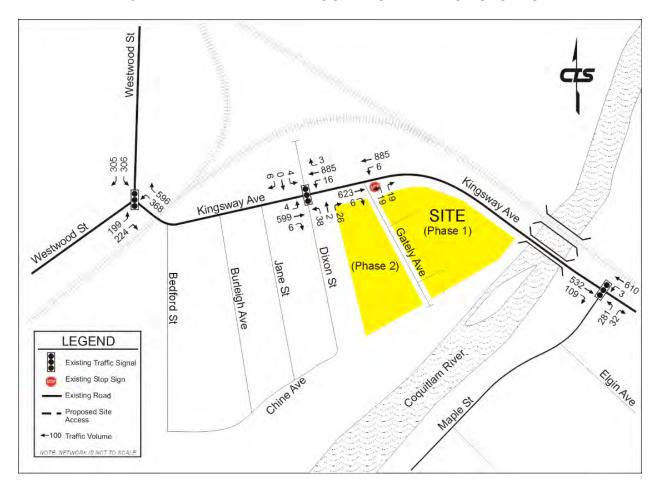


FIGURE 6
2022 WEEKDAY AM PEAK HOUR BASE TRAFFIC VOLUMES

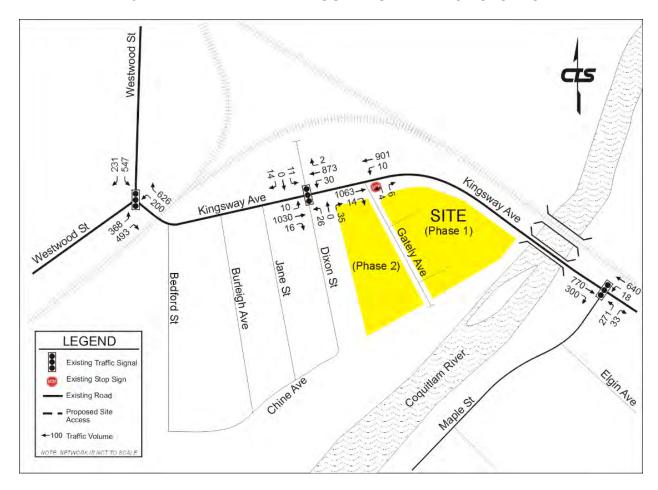


FIGURE 7
2022 WEEKDAY PM PEAK HOUR BASE TRAFFIC VOLUMES

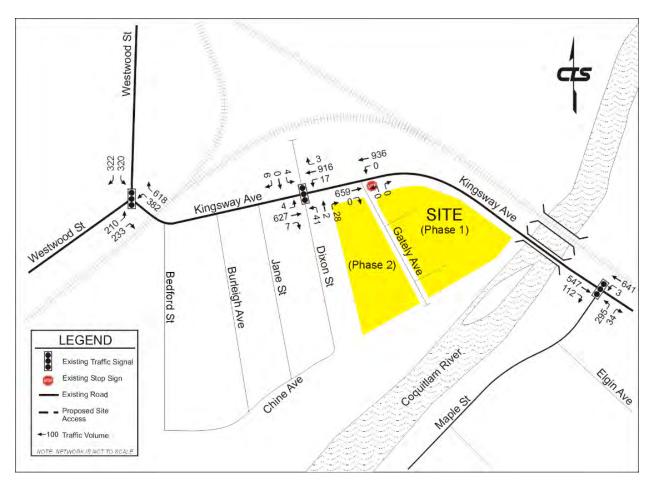


FIGURE 8
2025 WEEKDAY AM PEAK HOUR BASE TRAFFIC VOLUMES

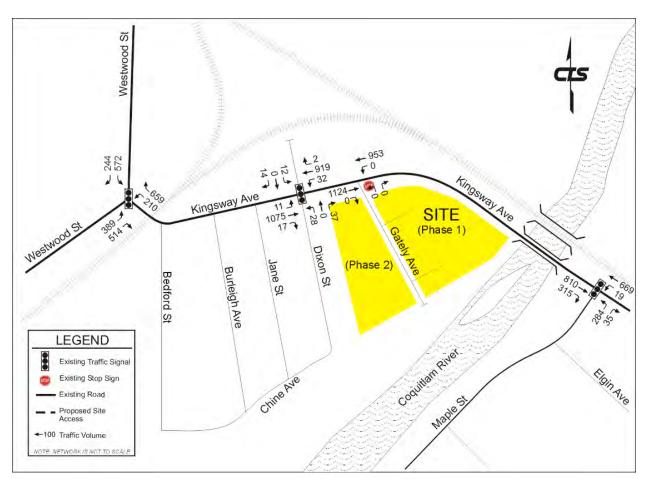


FIGURE 9
2025 WEEKDAY PM PEAK HOUR BASE TRAFFIC VOLUMES

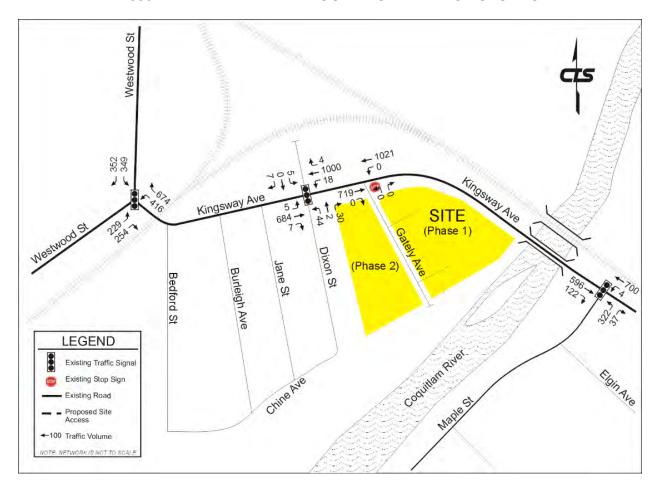


FIGURE 10 2030 WEEKDAY AM PEAK HOUR BASE TRAFFIC VOLUMES

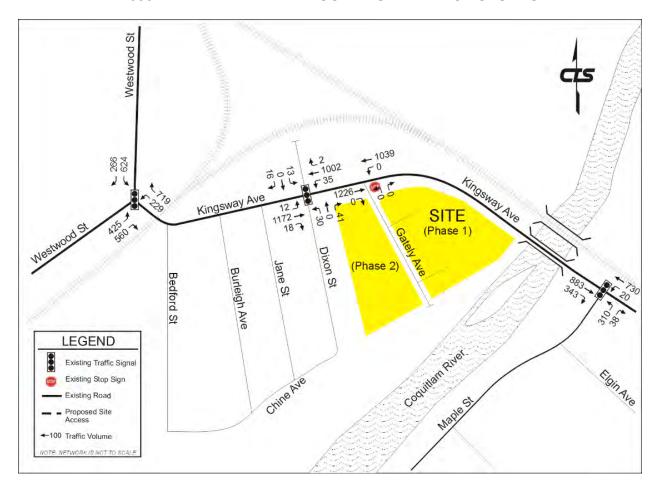


FIGURE 11 2030 WEEKDAY PM PEAK HOUR BASE TRAFFIC VOLUMES

3.0 SITE TRAFFIC VOLUMES

3.1 Trip Generation

The proposed housing development - Phase 1 will have 302 residential units and 4,000 ft² of day care space. The proposed housing development - Phase 2 will have up to 450 residential units. **TABLE 1** summarizes the projected site generated traffic with reference to the Institute of Transportation Engineers *Trip Generation Manual 10th Edition Code 221 – Multifamily Housing (Mid Rise)* and *Code 565 – Day Care*.

Note - Existing site generated traffic volumes were assumed to be zero so that the projected traffic volumes would represent the worst case scenario in that all traffic would be "new" traffic on the adjacent road network.

TABLE 1
SUMMARY OF SITE GENERATED VEHICLE TRIPS – PHASE 1 AND PHASE 2

Land Use		Peak Hour Trip Generation Variable	Scope of Development Vehicle Trip Generation	Trip Rate Source	Directional Split		Peak Hour Volumes (vph)		es (vph)			
			variable	Development	Rate	Source	% in	% out	in	out	total	
	Residential	Multi-Family	Multi-Family Weekday Morning Weekday Afternoon	- Dwelling Units	302	0.36	ITE 10th Edition Code 221	26%	74%	28	81	109
		(Mid-Rise)			302	0.44	ITE 10th Edition Code 221	61%	39%	81	52	133
Phase 1			Weekday Morning	1,000 Sq. Ft. GFA	4.0	11.00	ITE 10th Edition Code 565	53%	47%	23	21	44
Phase 1	Day	Day Care			4.0	11.12	ITE 10th Edition Code 565	47%	53%	21	24	45
	PHASE 1 TOTAL WEEKDAY MORNING PEAK HOUR							51	102	153		
	PHASE 1 TOTAL WEEKDAY AFTERNOON PEAK HOUR							EAK HOUR	102	76	178	
	Residential	Multi-Family	Weekday Morning	Dwelling Units	450	0.36	ITE 10th Edition Code 221	26%	74%	42	120	162
Phase 2	(Mid-Rise)	Weekday Afternoon	Dwelling Units	450	0.44	ITE 10th Edition Code 221	61%	39%	121	77	198	
rnase 2	PHASE 2 TOTAL WEEKDAY MORNING PEAK HOUR							42	120	162		
	PHASE 2 TOTAL WEEKDAY AFTERNOON PEAK HOUR							121	77	198		
ALL TOTAL WEEKDAY MORNING PEAK HOUR						93	222	315				
ALL TOTAL WEEKDAY AFTERNOON PEAK HOUR						223	153	376				

From **TABLE 1**, the proposed housing development - Phase 1 is forecast to generate a total of 167 <u>new</u> vehicle trips (55 inbound, and 112 outbound) during the weekday AM peak hour and 195 vehicle trips (113 inbound and 82 outbound) during the weekday PM peak hour.

The proposed housing development - Phase 2 is forecast to generate a total of 162 <u>new</u> vehicle trips (42 inbound, and 120 outbound) during the weekday AM peak hour and 198 vehicle trips (121 inbound and 77 outbound) during the weekday PM peak hour.

3.2 Site Trip Distribution

Trip distribution percentages for site generated vehicle trips to/from for the proposed housing development - Phase 1 and Phase 2, were developed from existing traffic patterns entering and exiting the study area. The trip distribution percentages for the proposed housing development - Phase 1 and Phase 2 are summarized by **TABLE 2**.

TABLE 2
TRIP DISTRIBUTION PERCENTAGES
FOR PHASE 1 AND PHASE 2 SITE GENERATED TRAFFIC

FROM/TO	WEEKDAY MORN	NING PEAK HOUR	WEEKDAY AFTERNOON PEAK HOUR			
11(3)(1) 13	INBOUND	OUTBOUND	INBOUND	OUTBOUND		
North - Westwood St	31.3%	37.2%	29.9%	39.0%		
East - Kingsway Ave	31.5%	26.0%	25.3%	31.6%		
South- Maple St	15.5%	5.3%	11.7%	12.5%		
South- Westwood St	21.6%	31.5%	33.1%	16.9%		
TOTAL	100.0%	100.0%	100.0%	100.0%		

The trip distribution percentages for the proposed housing development - Phase 1 and Phase 2 were used to calculate the trip distribution vehicle volumes for Phase 1 and Phase 2. The trip distribution vehicle volumes for the proposed housing development - Phase 1 and Phase 2 are summarized by **TABLE 3** and **TABLE 4**, respectively.

TABLE 3
TRIP DISTRIBUTION VEHICLE VOLUMES
FOR NEW SITE GENERATED TRAFFIC (PHASE 1)

FROM / TO	WEEKDAY MORI	NING PEAK HOUR	WEEKDAY AFTERNOON PEAK HOUR			
TROM/ TO	INBOUND	OUTBOUND	INBOUND	OUTBOUND		
North - Westwood St	16	38	31	30		
East - Kingsway Ave	16	26	26	24		
South- Maple St	8	6	12	9		
South- Westwood St	11	32	33	13		
TOTAL	51	102	102	76		
IOTAL	1	53	178			

TABLE 4 TRIP DISTRIBUTION VEHICLE VOLUMES FOR NEW SITE GENERATED TRAFFIC (PHASE 2)

FROM / TO	WEEKDAY MORN	NING PEAK HOUR	WEEKDAY AFTERNOON PEAK HOUR			
TROM/ TO	INBOUND	OUTBOUND	INBOUND	OUTBOUND		
North - Westwood St	13	45	36	30		
East - Kingsway Ave	13	31	31	24		
South- Maple St	7	6	14	10		
South- Westwood St	9	38	40	13		
TOTAL	42	120	121	77		
IOTAL	10	62	198			

FIGURE 12 and **FIGURE 13** illustrate the <u>new</u> site generated traffic volumes for the proposed housing development - Phase 1 for the 2022 weekday AM and PM peak hours. Similarly, FIGURE **14** and **FIGURE 15** illustrate the <u>new</u> site generated traffic volumes for the proposed housing development - Phase 2 for the 2025 weekday AM and PM peak hours.

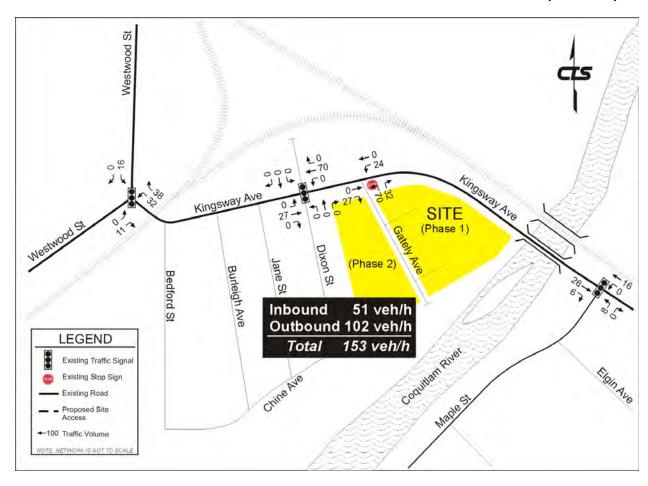


FIGURE 12 2022 WEEKDAY AM PEAK HOUR SITE GENERATED TRAFFIC VOLUMES (PHASE 1)

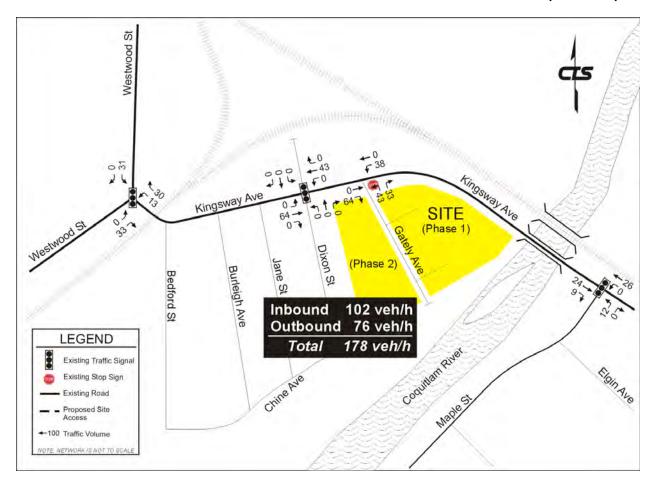


FIGURE 13 2022 WEEKDAY PM PEAK HOUR SITE GENERATED TRAFFIC VOLUMES (PHASE 1)

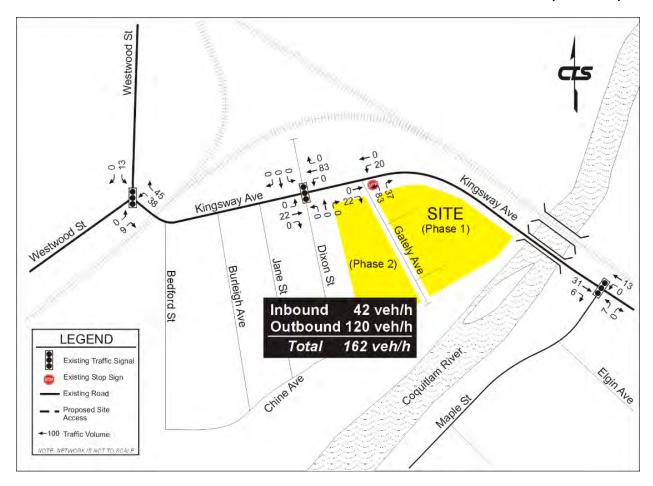


FIGURE 14 2025 WEEKDAY AM PEAK HOUR SITE GENERATION TRAFFIC VOLUMES (PHASE 2)

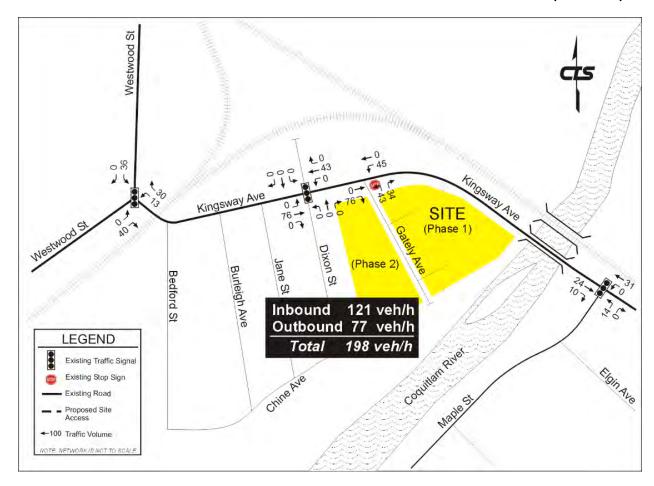


FIGURE 15 2025 WEEKDAY PM PEAK HOUR SITE GENERATION TRAFFIC VOLUMES (PHASE 2)

4.0 BASE + SITE TRAFFIC VOLUMES

FIGURE 16 and **FIGURE 17** illustrate the total projected traffic volumes for the future base and Phase 1 site generated traffic distributed to the adjacent street network for the year 2022.

FIGURE 18 and **FIGURE 19** illustrate the total projected traffic volumes for the future base and Phase 1 and Phase 2 site generated traffic distributed to the adjacent street network for the year 2025.

FIGURE 20 and **FIGURE 21** illustrate the total projected traffic volumes for the future base and Phase 1 and Phase 2 site generated traffic distributed to the adjacent street network for the year 2025 with a Chine Avenue connection.

FIGURE 22 and **FIGURE 23** illustrate the total projected traffic volumes for the future base and Phase 1 and Phase 2 site generated traffic distributed to the adjacent street network for the year 2030 with a Chine Avenue connection.

Note – Per the agreed upon Terms of Reference, the City of Port Coquitlam requires analyses of a Chine Avenue connection alternative to full movement access at the intersection of Gately Avenue and Kingsway Avenue. **FIGURES 20-23** include a Chine Avenue connection for the 2025 and 2030 horizon years.

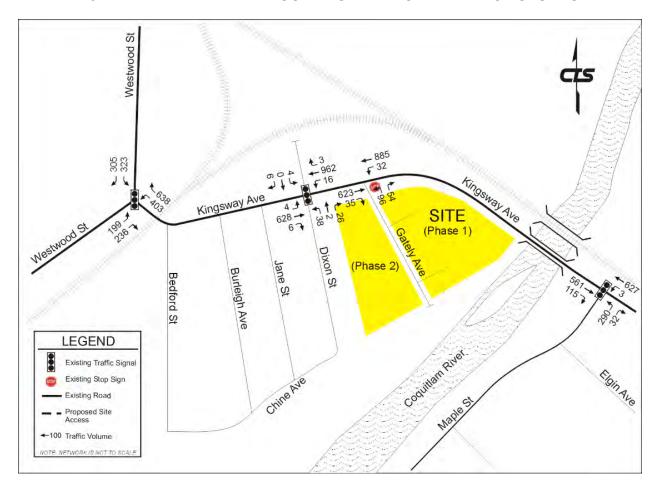


FIGURE 16 2022 WEEKDAY AM PEAK HOUR BASE + PHASE 1 TRAFFIC VOLUMES

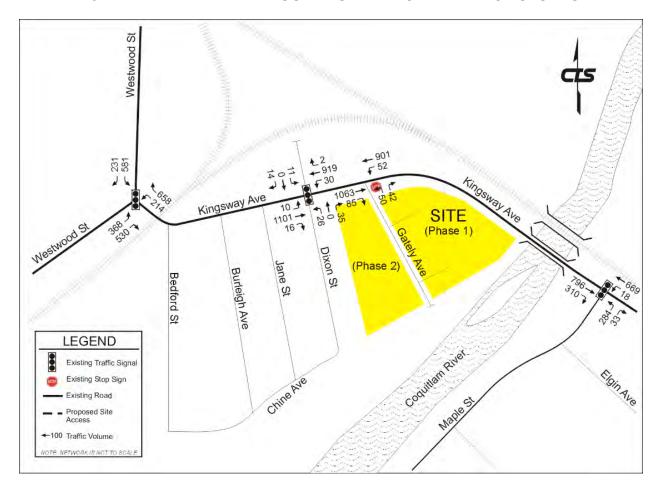


FIGURE 17
2022 WEEKDAY PM PEAK HOUR BASE + PHASE 1 TRAFFIC VOLUMES

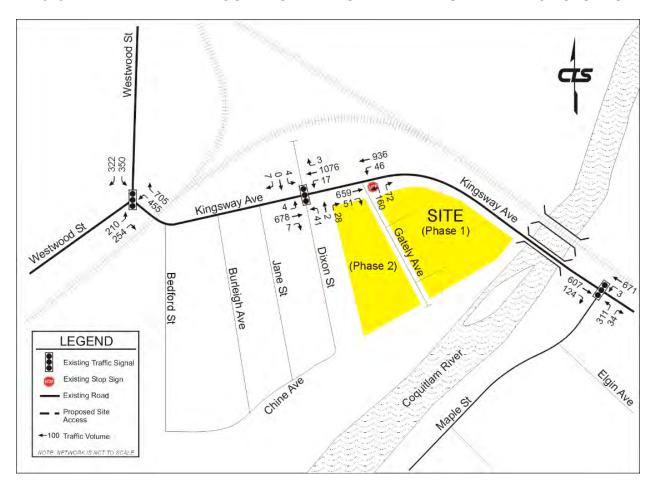


FIGURE 18
2025 WEEDAY AM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES

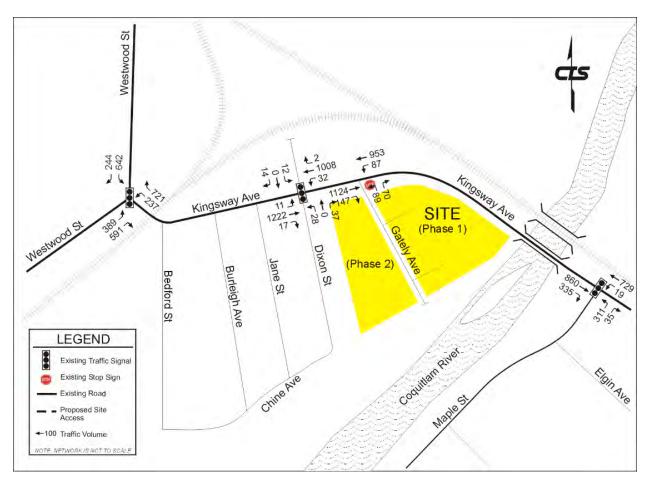


FIGURE 19 2025 WEEKDAY PM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES

FIGURE 20 2025 WEEKDAY AM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES WITH CHINE AVENUE CONNECTION

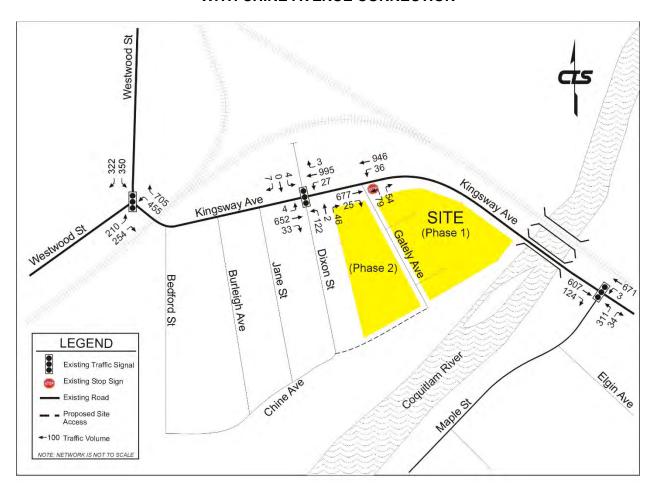


FIGURE 21
2025 WEEKDAY PM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES
WITH CHINE AVENUE CONNECTION

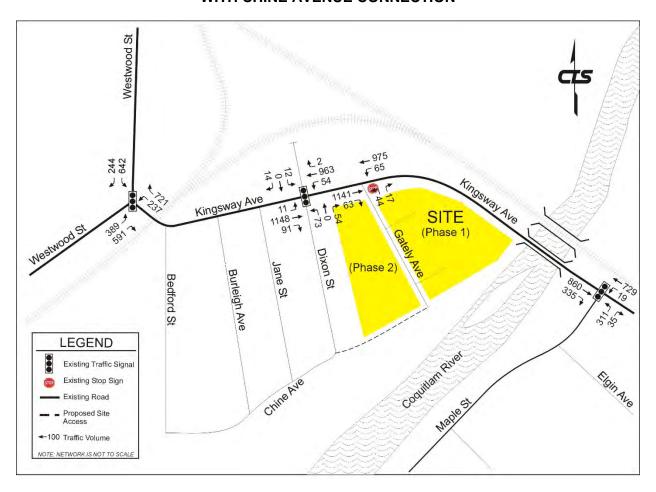


FIGURE 22 2030 WEEKDAY AM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES WITH CHINE AVENUE CONNECTION

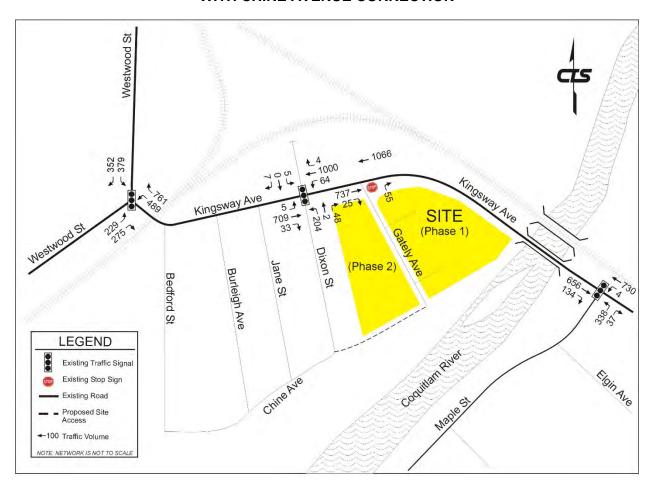
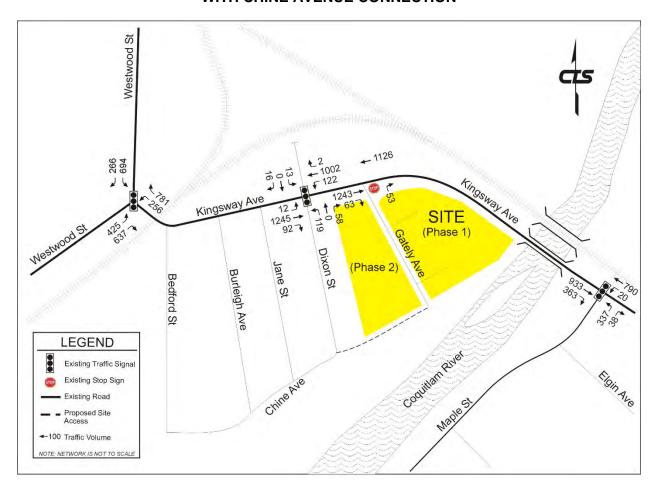



FIGURE 23
2030 WEEKDAY PM PEAK HOUR BASE + SITE TRAFFIC VOLUMES
2030 WEEKDAY PM PEAK HOUR BASE + PHASE 1 AND PHASE 2 TRAFFIC VOLUMES
WITH CHINE AVENUE CONNECTION

5.0 TRAFFIC ANALYSIS

5.1 Capacity Analysis

Capacity analysis was performed at each study intersection to determine the overall intersection and individual movement Level of Service (LOS) that is provided to motorists. The LOS for intersections and individual movements is defined in terms of delay (seconds per vehicle) which is a measure of driver discomfort and frustration, fuel consumption and lost travel time.

An intersection or movement LOS can range from "A" (Excellent) to "E" (Poor). A LOS of "F" (Fail) indicates that an intersection or individual movement is failing because the intersection or movement is over capacity and delays are excessive. A LOS of "D" (Fair) or better is considered acceptable by many public agencies for overall intersection, through and right turn movements and a LOS of "E" (Poor) or better is considered acceptable for left turn movements, at signalized intersections.

Synchro (Version 10.0) was used to analyze the intersection and individual movement level of service for signalized intersections. Highway Capacity Software (HCS 7) was used to analyze the intersection and individual movement level of service for unsignalized intersections.

With respect to the intersection and individual movement analysis, the following assumptions were made:

- Saturation flow rate → 1,800 passenger cars/hour of green/lane (pcphqpl).
- Truck percentage → 2% was used for all movements.
- Peak Hour Factor (PHF) → 0.93 for the weekday AM peak hour and 0.92 for the weekday PM peak hour which are an average of the PHF's from the traffic turning movement counts.

TABLE 5 summarizes and compares the delay in seconds and the 95th percentile queue in meters for each signalized intersection. **TABLE 6** summarizes and compares the delay in seconds and the 95th percentile queue for each unsignalized intersection. The capacity analysis summary sheets are included as **APPENDIX D**.

TABLE 5 SIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY

Intersection	Time of Day	Scenario	Performance	Е	astbour	nd	W	estboui	nd	No	orthbou	nd	Sc	outhbou	nd	LOS	Notes
intersection	Time of Day	- Cooriurio	Measure	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Notes
			Volumes				355		574		191	216	296	293			
		2020 Base	V/C				0.69		0.68		0.57	0.46	0.62	0.32		В	OK. Existing signal timing.
			95% Queue (m)				113.2		28.3		70.9	20.9	98.0	17.4			timing.
			Volumes				368		596		199	224	306	305			
		2022 Base	V/C				0.70		0.69		0.60	0.25	0.64	0.25		С	Optimized signal timing.
			95% Queue (m)				118.3		28.7		73.7	21.4	101.8	11.0			tarrang.
			Volumes				403		638		199	236	323	305			
		2022 Base + Phase 1	V/C				0.75		0.71		0.62	0.50	0.67	0.27		С	Optimized signal timing.
		i nase i	95% Queue (m)				130.1		30.0		74.8	22.2	108.3	13.9			anning.
	Weekday		Volumes				382		618		210	233	320	322			
	Morning	2025 Base	V/C				0.73		0.70		0.63	0.48	0.66	0.36	С	С	Optimized signal timing.
	Peak Hour		95% Queue (m)				124.1		29.4		77.1	21.7	108.5	26.9			uning.
		2025 Base +	Volumes				455		705		210	254	350	322			
		Phase 1 &	V/C				0.80		0.74		0.67	0.53	0.73	0.38		С	Optimized signal timing.
		Phase 2	95% Queue (m)				148.4		30.5		79.8	23.5	120.5	35.9			
			Volumes				416		674		229	254	349	352			
		2030 Base	V/C				0.77		0.73		0.68	0.51	0.71	0.40		С	Optimized signal
			95% Queue (m)				135.3		31.9		85.0	22.8	118.3	37.6			timing.
		2030 Base + Phase 1 &	Volumes				489		761		229	275	379	352			
			V/C				0.84		0.80		0.74	0.55	0.79	0.42		С	Optimized signal
Westwood Street (N/S)		Phase 2	95% Queue (m)				174.7		66.7		86.9	24.5	140.6	47.2			timing.
and Kingsway Avenue (E/W)			Volumes				192		604		354	475	528	222	11		Friedra - cian - I discin
(2.11)		2020 Base	V/C				0.66		0.81		0.80	0.68	0.85	0.21		С	Existing signal timing SBLT is near
			95% Queue (m)				73.8		42.9		134.9	41.8	193.8	6.6			capacity.
			Volumes				200		626		368	493	547	231			
		2022 Base	V/C				0.68		0.82		0.84	0.71	0.86	0.22		С	Optimized signal timing. SBLT is nea
			95% Queue (m)				76.7		44.8		145.7	53.3	203.2	6.7			cpacity.
			Volumes				214		658		368	530	581	231			Optimized signal
		2022 Base +	V/C				0.74		0.84		0.85	0.78	0.90	0.22		С	timing. NBTH &
		Phase 1	95% Queue (m)				83.4		47.7		146.8	78.8	218.6	9.1			SNLT are near capacity.
			Volumes				210		659		389	514	572	244			Optimized signal
	Weekday Afternoon	2025 Base	V/C				0.71		0.85		0.87	0.74	0.91	0.23		С	timing. WBRT,
	Peak Hour		95% Queue (m)				80.7		61.5		156.1	65.4	220.1	8.9			NBTH & SNLT are near capacity.
			Volumes				237		721		389	591	642	244			Optimized signal
		2025 Base + Phase 1 &	V/C				0.81		0.91		0.92	0.90	0.96	0.23		D	timing. WBRT, NB,
		Phase 2	95% Queue (m)				100.8		105.2		163.3	136.3	250.6	12.7			SBLT are near capacity.
			Volumes				229		719		425	560	624	266			Optimized signal
		2030 Base	V/C				0.79		0.94		0.94	0.83	0.97	0.25		D	timing. WBRT,
			95% Queue (m)				95.1		115.4		179.0	105.9	246.8	13.9			NBTH & SNLT are near capacity.
			Volumes				256		781		425	637	694	266			Optimized signal
		2030 Base + Phase 1 &	V/C				0.83		0.98		1.05	1.00	1.05	0.26		Е	timing. WBRT is near capacity. NB &
		Phase 2	95% Queue (m)				105.8		134.4		177.7	161.6	260.6	15.8		_	SNLT are over
	Pha		5070 Queue (III)				100.0		104.4			101.0	200.0	10.0			capacity.

Intersection approaching capacity (LOS 'D' or 'E'); or approach demand near capacity (v/c 0.85 to 0.99)
Intersection equals or exceeds capacity (LOS 'F'); or high approach demand over capacity (v/c => 1.0)
95% Queue length exceeds the capacity of existing storage bay.

TABLE 5 CONTINUED SIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY

Interpostion	Time of Day	Casparia	Performance	Е	astbour	nd	W	estbou	nd	Northbound	Southbound	LOS	Notes
Intersection	Time of Day	Scenario	Measure	Left	Thru	Right	Left	Thru	Right	Left Thru Right	Left Thru Right	LUS	Notes
			Volumes	4	579	6	15	853	3	37 2 25	4 0 6		
		2020 Base	V/C	0.26	0.26	0.26	0.38	0.38	0.38	0.23	0.03	Α	OK. Existing signal timing.
			95% Queue (m)	18.3	18.3	18.3	30.0	30.0	30.0	10.6	0.0		3
			Volumes	4	599	6	16	885	3	38 2 26	4 0 6		
		2022 Base	V/C	0.26	0.26	0.26	0.39	0.39	0.39	0.24	0.03	Α	Optimized signal timing.
			95% Queue (m)	19.3	19.3	19.3	32.2	32.2	32.2	10.9	0.0		carring.
			Volumes	4	628	6	16	962	3	38 2 26	4 0 6		
		2022 Base + Phase 1	V/C	0.27	0.27	0.27	0.42	0.42	0.42	0.24	0.03	Α	Optimized signal timing.
		Filase i	95% Queue (m)	20.4	20.4	20.4	36.2	36.2	36.2	11.6	0.0		uning.
			Volumes	4	627	7	17	916	3	41 2 28	4 0 7		
		2025 Base	V/C	0.28	0.28	0.28	0.41	0.41	0.41	0.25	0.03	Α	Optimized signal timing.
	Weekday		95% Queue (m)	20.8	20.8	20.8	34.6	34.6	34.6	11.5	0.0		uming.
	Morning	0005 D	Volumes	4	678	7	17	1076	3	41 2 28	4 0 7		
	Peak Hour	2025 Base + Phase 1 &	V/C	0.29	0.29	0.29	0.47	0.47	0.47	0.26	0.04	Α	Optimized signal
		Phase 2	95% Queue (m)	23.1	23.1	23.1	44.1	44.1	44.1	13.2	0.0		timing.
		2025 Base +	Volumes	4	652	22	27	995	3	122 2 46	4 0 7		
		Phase 1 & Phase 2 (with	V/C	0.39	0.39	0.39	0.61	0.61	0.61	0.51	0.03	Α	Optimized signal
		Chine Avenue	95% Queue (m)	35.5	35.5	35.5	63.0	63.0	63.0	34.1	0.0	^	timing.
		Connection)	` '										
			Volumes	5	684	7	18	1000	4	44 2 30	5 0 7	Α	Optimized signal
		2030 Base	V/C	0.30	0.30	0.30	0.44	0.44	0.44	0.27	0.04		timing.
		2030 Base + Phase 1 &	95% Queue (m)	23.5	23.5	23.5	40.0	40.0	40.0	12.9	0.0		Ontimized signal
			Volumes	5	709	33	64	1000	4	204 2 48	5 0 7	_	
		Phase 2 (with	V/C	0.46	0.46	0.46	0.74	0.74	0.74	0.72	0.02	В	Optimized signal timing.
Dixon Street (N/S) and		Chine Avenue Connection)	95% Queue (m)	54.0	54.0	54.0	97.0	97.0	97.0	73.0	0.0		
Kingsway Avenue (E/W)		,	Volumes	10	993	15	29	841	2	25 0 34	11 0 13		
,		2020 Base	V/C	0.44	0.44	0.44	0.39	0.39	0.39	0.20	0.08	Α	OK. Existing signa timing.
			95% Queue (m)	31.8	31.8	31.8	26.2	26.2	26.2	5.5	0.3	1	uning.
			Volumes	10	1030	16	30	873	2	26 0 35	11 0 14		
		2022 Base	V/C	0.45	0.45	0.45	0.41	0.41	0.41	0.21	0.09	Α	Optimized signal splits
			95% Queue (m)	34.7	34.7	34.7	28.5	28.5	28.5	5.8	0.4	† ^	Spiles
			Volumes	10	1101	16	30	919	2	26 0 35	11 0 14		
		2022 Base +	V/C	0.48	0.48	0.48	0.43	0.43	0.43	0.22	0.09	Α	Optimized signal
		Phase 1	95% Queue (m)	38.5	38.5	38.5	30.8	30.8	30.8	6.0	0.3		timing.
			Volumes	11	1075	17	32	919	2	28 0 37	12 0 14		
		2025 Base	V/C	0.47	0.47	0.47	0.43	0.43	0.43	0.23	0.09	Α	Optimized signal
	Weekday		95% Queue (m)	38.0	38.0	38.0	31.7	31.7	31.7	6.6	0.5		timing.
	Afternoon		Volumes	11	1222	17	32	1008	2	28 0 37	12 0 14		
	Peak Hour	2025 Base + Phase 1 &	V/C	0.56	0.56	0.56	0.50	0.50	0.50	0.25	0.10	Α	Optimized signal
		Phase 1 &	95% Queue (m)	45.5	45.5	45.5	35.5	35.5	35.5	7.2	0.10	^	timing.
		2025 Base +		45.5	1148	91	54	963	2	73 0 54	12 0 14		
		Phase 1 &	Volumes V/C	0.60	0.60					0.43			Optimized signal
		Phase 2 (with Chine Avenue				0.60	0.55	0.55	0.55		0.08	Α	timing.
		Connection)	95% Queue (m)	65.7	65.7	65.7	53.0	53.0	53.0	19.8	0.0		
			Volumes	12	1172	18	35	1002	2	30 0 41	13 0 16		
		2030 Base	V/C	0.55	0.55	0.55	0.51	0.51	0.51	0.26	0.10	Α	Optimized signal timing
			95% Queue (m)	45.3	45.3	45.3	37.7	37.7	37.7	8.1	0.7		-
		2030 Base + Phase 1 &	Volumes	12	1245	92	122	1002	2	119 0 58	13 0 16		
		Phase 2 (with	V/C	0.65	0.65	0.65	0.83	0.83	0.83	0.64	0.10	В	Optimized signal timing
		Chine Avenue	95% Queue (m)	91.8	91.8	91.8	137.7	137.7	137.7	33.3	0.0		timing
		Connection)	(LOS 'D' or 'E'); or ap	nraaah d	l			9E to 0 00))	<u> </u>			<u> </u>

Intersection approaching capacity (LOS 'D' or 'E'); or approach demand near capacity (v/c 0.85 to 0.99)
Intersection equals or exceeds capacity (LOS 'F'); or high approach demand over capacity (v/c => 1.0)
95% Queue length exceeds the capacity of existing storage bay.

TABLE 5 CONTINUED SINGALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY

Intersection	Time of Day	Scenario	Performance	Е	astbou	nd	W	estbou	nd	No	orthbou	nd	Sc	outhbou	ınd	LOS	Notes
intersection	Time or Day	Scenario	Measure	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Notes
			Volumes		514	106	3	589		271		31					
		2020 Base	V/C		0	.75	0.01	0.70		0.55		0.05				В	OK. Existing signal timing.
			95% Queue (m)		9	9.9	1.3	92.2		51.5		4.3					uning.
			Volumes		532	109	3	610		281		32					
		2022 Base	V/C		0	.75	0.01	0.70		0.60		0.07				В	Optimized signal timing.
			95% Queue (m)		9	3.2	1.1	86.1		60.0		5.9					g.
			Volumes		561	115	3	627		290		32					
		2022 Base + Phase 1	V/C		0	.78	0.01	0.71		0.62		0.07				В	Optimized signal timing.
		Phase 1	95% Queue (m)		10	2.8	1.1	90.3		62.0		5.9					carring.
	Weekday		Volumes		547	112	3	641		295		34					
	Morning	2025 Base	V/C		0	.77	0.01	0.73		0.63		0.08				В	Optimized signal timing.
	Peak Hour		95% Queue (m)		9	7.9	1.1	94.0		63.2		6.1					uning.
		2025 Base +	Volumes		607	124	3	671		311		34					
		Phase 1 &	V/C		0	.81	0.02	0.74		0.68		0.08				В	Optimized signal timing.
		Phase 2	95% Queue (m)		11	4.9	1.1	97.4		75.0		6.2					uming.
			Volumes		596	122	4	700		322		37					
		2030 Base	V/C		0	.81	0.02	0.78		0.69		0.08				В	Optimized signal
			95% Queue (m)		11	5.8	1.4	109.9		71.2		6.4					timing.
		0000 D	Volumes		656	134	4	730		338		37					
		2030 Base + Phase 1 & Phase 2	V/C		0	.86	0.03	0.78		0.75		0.09				С	Optimized signal timing. EB is near
Maple Street (N/S) &			95% Queue (m)		16	1.2	1.3	114.1		85.0		6.6					capacity.
Kingsway Avenue (E/W)		2020 Base	Volumes		744	289	17	616		262		32					
(277)			V/C		1.	.09	0.16	0.63		0.64		0.08				D	Existing signal timin
			95% Queue (m)		25	8.7	5.2	99.6		50.4		5.3					EB is over capacity
			Volumes		770	300	18	640		271		33					
		2022 Base	V/C		0	.98	0.20	0.57		0.90		0.11				С	Optimized signal timing. EB & NBLT
			95% Queue (m)		23	9.6	4.3	65.5		83.0		7.0					are near capacity.
			Volumes		796	310	18	669		284		33					
		2022 Base +	V/C			.99	0.26	0.58		0.92		0.11				С	Optimized signal timing. EB & NBL1
		Phase 1	95% Queue (m)		30	5.3	6.0	82.9		15.3		7.9					are near capacity.
			Volumes		810	315	19	669		284		35					
	Weekday Afternoon	2025 Base	V/C			.99	0.26	0.57		0.95		0.12				С	Optimized signal timing. EB & NBLT
	Peak Hour		95% Queue (m)			7.2	6.0	86.3		115.9		8.8					are near capacity.
			Volumes		860	335	19	729		311		35					
	:	2025 Base + Phase 1 &	V/C			.05	0.37	0.61		1.01		0.12				D	Optimized signal timing. EB & NBLT
		Phase 2	95% Queue (m)			2.7	11.1	116.6		147.7		11.2					are over capacity.
			Volumes		883	343	20	730		310		38					
		2030 Base	V/C			.07	0.38	0.61		1.02		0.13				D	Optimized signal timing. EB & NBLT
			95% Queue (m)			9.1	12.4	115.0		48.1		117.0					are over capacity.
			Volumes		933	363	20	790		337		38					
		2030 Base + Phase 1 &	V/C			.12	0.38	0.66		1.14		0.13				Е	Optimized signal timing, FB & NBI T
		Phase 2	95% Queue (m)			6.7	12.1	131.5		166.8		12.4					timing. EB & NBLT are over capacity.
		95% Queue (m)							100.0		12.4						

Intersection approaching capacity (LOS 'D' or 'E'); or approach demand near capacity (v/c 0.85 to 0.99) Intersection equals or exceeds capacity (LOS 'F'); or high approach demand over capacity (v/c => 1.0) 95% Queue length exceeds the capacity of existing storage bay.

TABLE 6 UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY

Intersection	Time of	Scenario	Performance	E	astbour	nd	W	estbou	nd	N	orthbou	nd	Sc	outhbou	ınd	LOS	Notes
	Day	303.1a.13	Measure	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		
			Volumes		599	9	9	851		20		21					
		2020 Base	Delay		0.0	0.0	8.9	0.0			21.1	•				Α	ок
			95% Queue (veh)		0.0	0.0	0.0	0.0			0.6						
			Volumes		623	6	6	885		19		19					
		2022 Base	Delay		0.0	0.0	9.0	0.0			22.0					Α	ок
	2022 Rase + Phase		95% Queue (veh)		0.0	0.0	0.0	0.0			0.6						
		2022 Base + Phase 1	Volumes		623	33	30	885		89		51					
		(Existing Lane	Delay		0.0	0.0	9.2	0.0			59.7					Α	NB movements are over capacity.
		Configuration)	95% Queue (veh)		0.0	0.0	0.1	0.0			4.8						
		2022 Base + Phase 1	Volumes		623	63		934				140					
		(Right-in/Right-out	Delay		0.0	0.0		0.0				19.4				Α	ок
		Access	95% Queue (veh)		0.0	0.0		0.0				1.7					
		2022 Base + Phase 1	Volumes		623	33	30	885		89		51					
		(WBLT Lane & NBLT	Delay		0.0	0.0	9.2	0.0			18.2					Α	ок
		Receiving Lane)	95% Queue (veh)		0.0	0.0	0.1	0.0			1.6						
		2025 Base	Volumes		659	0	0	936		0		0					
			Delay		0.0	0.0	0.0	0.0			0.0	-				Α	ок
			95% Queue (veh)		0.0	0.0	0.0	0.0			0.0						
Gately Avenue	Weekday	2025 Base + Phase 1 & Phase 2 (Right-in/Right-	Volumes		659	93		980				222			A		NBRT is
(N/S) and Kingsway	Morning		Delay		0.0	0.0		0.0				29.8				Α	approaching
Avenue (E/W)	Peak Hour	out Access)	95% Queue (veh)		0.0	0.0		0.0				4.2					capacity.
		2025 Base + Phase 1 &	Volumes		659	49	44	936		153		69					NB movements are
		phase 2 (WBLT Lane &	Delay		0.0	0.0	9.5	0.0			27.4					Α	approaching
		NBLT Receiving Lane)	95% Queue (veh)		0.0	0.0	0.2	0.0			3.9						capacity.
		2025 Base + Phase 1 &	Volumes		677	38		980				51					
		Phase 2 (Right-in/Right- out with Chine Avenue	Delay		0.0	0.0		0.0				16.6				Α	ОК
		Connection)	95% Queue (veh)		0.0	0.0		0.0				0.5					
			Volumes		719	0	0	1021		0		0					
		2030 Base	Delay		0.0	0.0	0.0	0.0			0.0					Α	ок
			95% Queue (veh)		0.0	0.0	0.0	0.0			0.0						
		2030 Base + Phase 1 &	Volumes		719	93		1065				222					NBRT is
		Phase 2 (Right-in/Right-	Delay		0.0	0.0		0.0				36.9				Α	approaching
		out Access)	95% Queue (veh)		0.0	0.0		0.0				0.5					capacity.
		2030 Base + Phase 1 &	Volumes		719	49	44	1021		153		69					NB movements are
		Phase 2 (WBLT Lane &	Delay		0.0	0.0	9.8	0.0			32.8					Α	approaching
		NBLT Receiving Lane)	95% Queue (veh)		0.0	0.0	0.2	0.0			4.6						capacity.
		2030 Base + Phase 1 &	Volumes		737	38		1065				51					
		Phase 2 (Right-in/Right- out with Chine Avenue	Delay		0.0	0.0		0.0				18.0				Α	ок
			95% Queue (veh)		0.0	0.0		0.0				0.6					

Delay = Average Delay (seconds/vehicle)
Intersection approaching capacity (LOS 'D' or 'E'); ; or medium approach delays (25sec to <50sec)

Intersection equals or exceeds capacity (LOS 'F'); or high approach delays (=> 50sec)

95% Queue = UNSIGNALIZED QUEUE IS PER VEHICLE

TABLE 6 CONTINUED UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY

Intersection	Time of	Scenario	Performance	Е	astbour	nd	W	estbou	nd	N	orthbou	nd	Sc	outhbou	ınd	Los	Notes
litter section	Day	oceriario	Measure	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right		Notes
			Volumes		1022	16	12	866		6		11					ND.
		2020 Base	Delay		0.0	0.0	11.0	0.0			34.3					Α	NB movements are approaching
			95% Queue (veh)		0.0	0.0	0.1	0.0			0.4						capacity.
			Volumes		1063	14	10	901		4		6					NB movements are
		2022 Base	Delay		0.0	0.0	11.2	0.0			36.4					Α	approaching
			95% Queue (veh)		0.0	0.0	0.1	0.0			0.3						capacity.
		2022 Base + Phase 1	Volumes		1063	78	48	901		47		39					
		(Existing Lane	Delay		0.0	0.0	12.1	0.0			202.2					Α	NB movements are over capacity.
		Configuration)	95% Queue (veh)		0.0	0.0	0.3	0.0			6.3						over capacity.
		2022 Base + Phase 1	Volumes		1063	126		953				86					NBRT is
		(Right-in/Right-out	Delay		0.0	0.0		0.0				41.2				Α	approaching
		Access)	95% Queue (veh)		0.0	0.0		0.0				2.4					capacity.
		2022 Base + Phase 1	Volumes		1063	78	48	901		47		39					NB movements are
		(WBLT Lane & NBLT	Delay		0.0	0.0	12.1	0.0			34.3					Α	approaching
		Receiving Lane)	95% Queue (veh)		0.0	0.0	0.3	0.0			2.1						capacity.
			Volumes		1124	0	0	953		0		0					
		2025 Base	Delay		0.0	0.0	0.0	0.0			0.0					Α	ок
			95% Queue (veh)		0.0	0.0	0.0	0.0			0.0						
Gately Avenue	Weekday	025 Base + Phase 1 &	Volumes		1124	223		1036				153					
(N/S) and Kingsway	Afternoon	Phase 2 (Right-in/Right-	Delay		0.0	0.0		0.0				116.0			А	Α	NBRT is over capacity.
Avenue (E/W)	Peak Hour	out Access)	95% Queue (veh)		0.0	0.0		0.0				7.6				,	
		2025 Base + Phase 1 &	Volumes		1124	140	83	953		86		67					
		phase 2 (WBLT Lane & NBLT Receiving Lane)	Delay		0.0	0.0	13.8	0.0			96.8					Α	NB movements are over capacity.
		NBL1 Receiving Lane)	95% Queue (veh)		0.0	0.0	0.7	0.0			6.9						
		2025 Base + Phase 1 &	Volumes		1141	102		1036				50					NBRT is
		Phase 2 (Right-in/Right- out with Chine Avenue	Delay		0.0	0.0		0.0				36.8				Α	approaching
		Connection)	95% Queue (veh)		0.0	0.0		0.0				1.3					capacity.
			Volumes		1226	0	0	1039		0		0					
		2030 Base	Delay		0.0	0.0	0.0	0.0			0.0					Α	ок
			95% Queue (veh)		0.0	0.0	0.0	0.0			0.0						
		2030 Base + Phase 1 &	Volumes		1226	223		1122				153					
		Phase 2 (Right-in/Right- out Access)	Delay		0.0	0.0		0.0				184.2				В	NBRT is over capacity.
		out Access)	95% Queue (veh)		0.0	0.0		0.0				9.4					
		2030 Base + Phase 1 &	Volumes		1226	140	83	1039		86		67					
		Phase 2 (WBLT Lane & NBLT Receiving Lane)	Delay		0.0	0.0	14.9	0.0			153.4					Α	NB movements are over capacity.
		TABLE Receiving Latte)	95% Queue (veh)		0.0	0.0	0.7	0.0			8.7						
		2030 Base + Phase 1 &	Volumes		1243	102		1122				50					NBRT is
		Phase 2 (Right-in/Right- out with Chine Avenue	Delay		0.0	0.0		0.0				46.2			A	Α	approaching capacity.
		Connection)	95% Queue (veh)		0.0	0.0		0.0				1.7					сараску.

Delay = Average Delay (seconds/vehicle)
Intersection approaching capacity (LOS 'D' or 'E'); ; or medium approach delays (25sec to <50sec)

Intersection equals or exceeds capacity (LOS 'F'); or high approach delays (=> 50sec)

95% Queue = UNSIGNALIZED QUEUE IS PER VEHICLE

Based on the capacity analyses summarized by **TABLE 5** and **TABLE 6**, the following observations can be made:

Westwood Street (N/S) at Kingsway Avenue (E/W)

- The signalized intersection currently operates at an overall LOS B (Very Good) and LOS C (good) during the existing AM and PM peak hours with existing traffic signal timing. The southbound left turn movement is approaching capacity during the AM peak hour.
- By the year 2022 under base traffic conditions and with optimized signal timing, the overall intersection level of service is LOS C (Good) during the AM and PM peak hours. The southbound left-turn movement is approaching capacity in the PM peak hour.
- Addition of Phase 1 site traffic to 2022 base traffic conditions results in no change
 to the overall intersection level of service. The overall intersection level of service
 remains at C (Good) during the AM and PM peak hours. The northbound through
 and the southbound left turn movements are approaching capacity.
- By the year 2025 under base traffic conditions and with optimized signal timing, the overall intersection level of service is LOS C (Good) during the AM and PM peak hours. The westbound right turn, the northbound through, and the southbound left turn movements are approaching capacity during the PM peak hour
- Addition of Phase 1 and Phase 2 site traffic to base 2025 base traffic conditions results in change to the overall intersection level of service. The overall intersection level of service remains at C (good) during the AM peak hour however, the overall intersection level of service is LOS D (Fair) during the PM peak hour. The westbound right-turn, the northbound through and right turn, and the southbound left turn movements are approaching capacity.
- By the year 2030 under base traffic conditions and with optimized signal timing, the overall intersection level of service is LOS C (Good) during the AM peak hour and LOS D (Fair) during the PM peak hour. The westbound right-turn, the northbound through, and the southbound left-turn movements are approaching capacity during the PM peak hour.
- For the year 2030 the overall intersection level of service is LOS C (Good) during the AM peak hour. However, the overall intersection level of service is projected to decrease to LOS E (Poor) during the PM peak hour. The westbound right turn movement is approaching capacity and the northbound through and right turn, and the southbound left-turn movements are over capacity.

Dixon Street (N/S) at Kingsway Avenue (E/W)

- The signalized intersection currently operates at an overall LOS A (Excellent) with the existing traffic signal timing, for the existing AM and PM peak hours.
- By the years 2022, 2025 and 2030 under base traffic conditions and with optimized signal timing, the overall intersection level of service remains at LOS A (Excellent) during the AM and PM peak hours.
- Addition of Phase 1 site traffic to 2022 base traffic conditions does not result in a change to the overall intersection level of service. It remains at LOS A (Excellent) during the AM and PM peak hours.
- Addition of Phase 1 and Phase 2 site traffic to 2025 base traffic conditions does not result in change to the overall intersection level of service. It remains at LOS A (Excellent) without and with a Chine Avenue connection, during the AM and PM peak hours.
- By the year 2030, the overall intersection level of service is LOS B (Very Good) without and with a Chine Avenue connection, during the AM and PM peak hours.

Maple Street (N/S) at Kingsway Avenue (E/W)

- The signalized intersection currently operates at an overall LOS B (Very Good) during the AM peak hour and LOS D (Fair) during the PM peak hour with the existing traffic signal timing. The eastbound movements are over capacity.
- By the year 2022 and 2025 under base traffic conditions and with optimized signal timing, the overall intersection level of service is LOS B (Very Good) during the AM peak hour and LOS C (Good) in the PM peak hour. However, the eastbound and the northbound left turn movements are approaching capacity in the PM peak hour.
- By the year 2030 under base traffic conditions and with optimized signal timing, the overall intersection level of service is LOS B (Very Good) during the AM peak hour and LOS D (Fair) in the PM peak hour. The eastbound and northbound left turn movements are over capacity.
- Addition of Phase 1 site traffic to 2022 base traffic conditions does not result in a change to the overall intersection level of service. It remains at LOS B (Very Good) during the AM peak hour and LOS C (Good) during the PM peak hour. The eastbound and northbound left turn movements are approaching capacity.
- Addition of Phase 1 and Phase 2 site traffic to 2025 base traffic conditions results in an overall intersection level of service of LOS B (Very Good) during the AM peak hour and LOS D (Fair) during the PM peak hour. The eastbound and northbound left turn movements are over capacity.
- By the year 2030 the overall intersection level of service is LOS C (Good) during the AM peak hour and at LOS E (Poor) during the PM peak hour. The eastbound and northbound left-turn movements are over capacity.

Gately Avenue (N/S) at Kingsway Avenue (E/W)

- This location currently operates as an unsignalized intersection with STOP control
 on Gately Avenue. For the existing conditions, the intersection operates at LOS A
 (Excellent) during the AM and PM peak hours. The northbound movements are
 approaching capacity during the PM peak hour.
- By the year 2022 under base traffic conditions, the overall intersection level of service remains at LOS A (Excellent) during the AM and PM peak hours. The northbound movements are approaching capacity during the PM peak hour.
- By the year 2025 and year 2030 under base traffic conditions, the overall intersection level of service remains at LOS A (Excellent) during the AM and PM peak hours.
- Addition of Phase 1 site traffic to 2022 base traffic conditions does not result in a change to the overall intersection level of service during the AM and PM peak hours. It remains at LOS A (Excellent). The northbound movements are over capacity during the AM and PM peak hours.
- To improve safety and the level of service for Gately Avenue at Kingsway Avenue in 2022, CTS considered two options:
 - Right-In/Right-Out only at the intersection of Gately Avenue and Kingsway Avenue.
 - A westbound left turn lane mirrored by a receiving lane for the northbound left turn movement, on Kingsway Avenue at Gately Avenue.

The overall intersection level of service is LOS A (Excellent) during the AM and PM peak hours however the northbound movements are approaching capacity for both options during the PM peak hour.

- By the year 2025 base traffic condition with Phase 1 and Phase 2 site traffic, the overall intersection level of service is LOS A (Excellent) during the AM and PM peak hours.
- To improve safety and the level of service for Gately Avenue at Kingsway Avenue in 2025, CTS considered three options:
 - Right-In/Right-Out only at the intersection of Gately Avenue and Kingsway Avenue.
 - A westbound left turn lane mirrored by a receiving lane for the northbound left turn movement, on Kingsway Avenue at Gately Avenue.
 - o Right-In/Right-Out at the intersection of Gately Avenue and Kingsway Avenue with a Chine Avenue connection.

The northbound right turn is approaching capacity in the AM peak hour and over capacity in the PM peak hour for the right-in/right-out only option.

The northbound left turn/through/right turn movements are approaching capacity in the AM peak hour and over capacity in the PM peak hour for the westbound left turn lane/receiving lane option.

The northbound right turn is approaching capacity in the PM peak hour for the right-in/right-out with a Chine Avenue connection.

- For the year 2030 base traffic condition with Phase 1 and Phase 2 site traffic, the overall intersection level of service is LOS A (Excellent) during both the AM and PM peak hours.
- To improve safety and the level of service for Gately Avenue at Kingsway Avenue in 2030, CTS considered three options:
 - Right-In/Right-Out only at the intersection of Gately Avenue and Kingsway Avenue.
 - o A westbound left turn lane mirrored by a receiving lane for the northbound left turn movement, on Kingsway Avenue at Gately Avenue.
 - o Right-In/Right-Out at the intersection of Gately Avenue and Kingsway Avenue with a Chine Avenue connection.

The northbound right turn is approaching capacity in the AM peak hour and over capacity in the PM peak hour for the right-in/right-out only option.

The northbound left turn/through/right turn movements are approaching capacity in the AM peak hour and over capacity in the PM peak hour for the westbound left turn lane/receiving lane option.

The northbound right turn is approaching capacity in the PM peak hour for the right-in/right-out with a Chine Avenue connection.

6.0 ACCESS AND SIGHT LINES

6.1 Sight Lines

CTS reviewed the sight lines to/from the intersection of Gately Avenue given the horizontal curve on Kingsway Avenue to the east is limiting for vehicles turning left on to Kingsway Avenue from Gately Avenue or turning left on to Gately Avenue from Kingsway Avenue.

With reference to the Transportation Association of Canada *Geometric Design Guide for Canadian Roads 2017, Table 2.5.2: Stopping Sight Distance*, the stopping sight distance for a road posted at 50 km/h is 65 meters. CTS measured the stopping sight distance from the STOP bar on Gately Avenue east to a point on Kingsway Avenue westbound at 70 meters. CTS also measured the stopping sight distance from the intersection with Gately Avenue east to a point on Kingsway Avenue westbound at 85 meters. The left turn from Gately Avenue to Kingsway Avenue is the critical manoeuver.

CTS also tested a scenario assuming a vehicle approaching the intersection of Gately Avenue and Kingsway Avenue from the east is approaching at 60 km/h, a typical operating speed. In this instance the stopping sight distance would be 85 meters.

6.2 Access

To more safely accommodate left turns at the intersection of Gately Avenue and Kingsway Avenue, CTS considered the creation of a left turn lane and a receiving lane on Kingsway Avenue at Gately Avenue. Creation of the left turn lane and receiving lane on Kingsway Avenue at Gately Avenue was considered for the 2022 base traffic condition with Phase 1 site traffic as well as the 2025 and 2030 base traffic condition with Phase 1 and Phase 2 site traffic, analysis. The proposed laning is illustrated by **FIGURE 24**.

CTS also considered right-in/right-out on Kingsway Avenue at Gately Avenue. Creation of the right-in/right-out only on Kingsway Avenue at Gately Avenue was considered for the 2022 base traffic condition with Phase 1 site traffic as well as the 2025 and 2030 base traffic condition with Phase 1 and Phase 2 site traffic, analysis. The proposed laning is illustrated by **FIGURE 25**.

CTS also considered a Chine Avenue connection with right-in/right-out only on Kingsway Avenue at Gately Avenue. Creation of a Chine Avenue connection with right-in/right-out only on Kingsway Avenue at Gately Avenue was considered for the 2025 and 2030 base traffic condition with Phase 1 and Phase 2 site traffic, analysis. The proposed connection is illustrated by **FIGURE 26**.

CTS did not consider signalization of the intersection of Kingsway Avenue at Gately Avenue given the following:

- The intersection spacing between Dixon Street and Gately Avenue does not meet the minimum with reference to the Transportation Association of Canada Geometric Design Guide for Canadian Roads 2017, Section 9.4.2.1: Arterials; and
- The turning sight distance does not meet the minimum with reference to the Transportation Association of Canada Geometric Design Guide for Canadian Roads 2017, Table 9.9.4: Design Intersection Sight Distance.

FIGURE 24
GATELY AVENUE AT KINGSWAY AVENUE – WESTBOUND LEFT TURN LANE/RECEIVING LANE

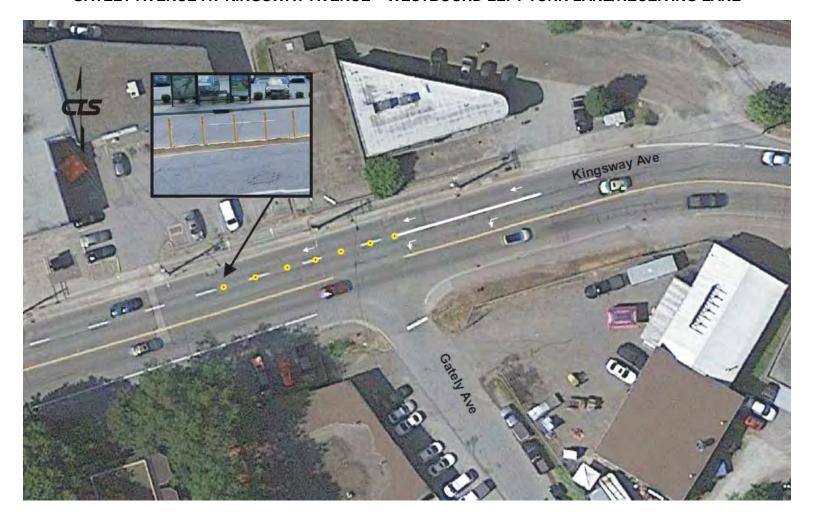


FIGURE 25
GATELY AVENUE AT KINGSWAY AVENUE – RIGHT-IN/RIGHT-OUT

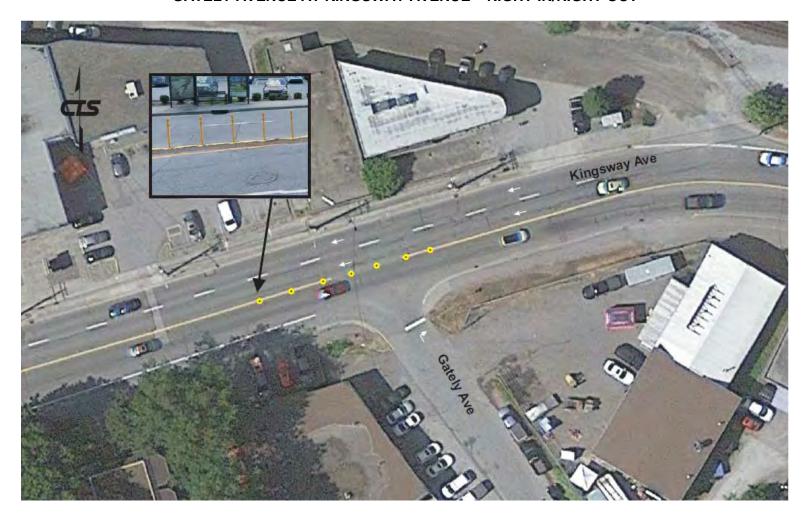
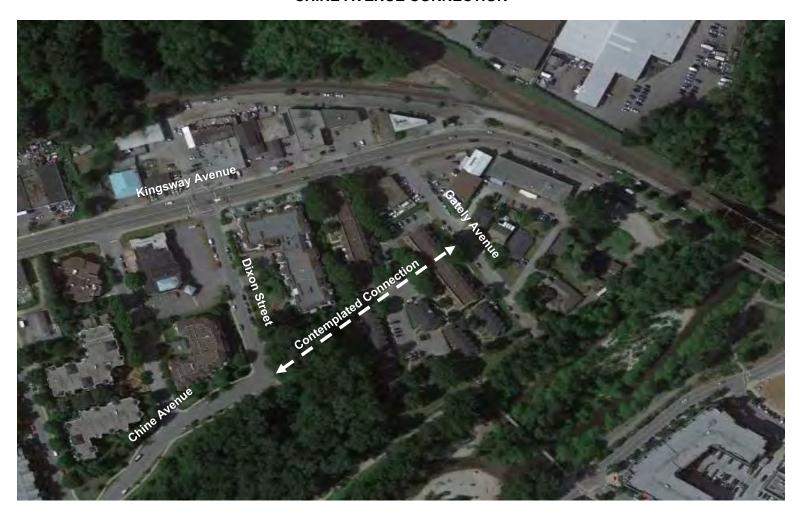



FIGURE 26 CHINE AVENUE CONNECTION

7.0 PARKING AND LOADING

7.1 Vehicle Parking

With reference to the City of Port Coquitlam *Zoning Bylaw 4078 – Parking and Development Management*, 300 off-street vehicle parking spaces are required for the non-market housing and five (5) off-street parking spaces for a daycare. **TABLE 7** summarizes the vehicle parking requirement and provision.

TABLE 7
VEHICLE PARKING SUMMARY

USE	RATE (BYLAW)	SCOPE	REQUIRED	PROVIDED	DIFFERENCE
Phase 1 (Non-market Housing)	1 per dwelling unit	300	300	289	-11
Daycare	1 for each 10 children	50	5	5	

From **TABLE 7**, the development is proposing 294 off-street vehicle parking spaces. The proposed off-street vehicle parking requirement is therefore deficient and an eleven (11) vehicle parking space variance or a 0.96 parking space per unit rate, is being sought.

In support of a an eleven (11) vehicle parking space variance or a 0.96 parking space per unit rate, CTS referenced the Institute of Transportation Engineers (ITE) *Parking Generation Manual 5th Edition - Affordable Housing (Code 223)* wherein it notes that the parking space rate per unit can be as low as 0.32 parking spaces per unit for affordable non-market housing. It is also noted that the 85th percentile parking space rate can range between 0.86 and 1.33 parking spaces per unit and the 95% confidence interval parking space rate can range between 0.89 and 1.09 parking spaces per unit.

Given vehicle ownership amongst residents of affordable non-market housing is generally low, good access to transport modal infrastructure and with reference to the preceding statistics, it would be reasonable to accept an (11) vehicle parking space variance or a 0.96 parking space per unit parking space rate for this development site.

7.2 Bicycle Parking

With reference to the City of Port Coquitlam Zoning Bylaw 4078 – Parking and Development Management, there is no bicycle parking space requirement for the site.

7.3 Loading

With reference to the City of Port Coquitlam *Zoning Bylaw 4078 – Parking and Development Management,* there is no loading space requirement for the site.

8.0 SUMMARY & CONCLUSIONS

CTS conducted a Traffic Impact Study for a proposed housing development at the intersection of Gately Avenue at Kingsway Avenue in the City of Port Coquitlam. Based on the analysis documented, the following can be stated:

- 1) The proposed housing development is well serviced by the local street network.
- 2) Transport model infrastructure adjacent to the site provides localized access to walking, cycling and transit. There are opportunities for adding to the pedestrian and cycling network given the proximity to existing transport modal infrastructure.
- 3) The proposed housing development Phase 1 is forecast to generate a total of 153 new vehicle trips (51 inbound, 102 outbound) during the weekday AM peak hour, and 178 new vehicle trips (102 inbound, 76 outbound) during the PM peak hour. The proposed housing development Phase 2 is forecast to generate a total of 162 new vehicle trips (42 inbound, 120 outbound) during the weekday AM peak hour, and 198 new vehicle trips (121 inbound, 77 outbound) during the weekday PM peak hour.
- 4) CTS did not discount new vehicle trips generated by Phase 1 and Phase 2 by subtracting vehicle trips currently being generated by the existing land uses on the Phase 1 and Phase 2 housing development sites. Traffic volumes therefore represent the worst case scenario in that all traffic would be "new" traffic on the adjacent road network and the capacity analysis is considered conservative.
- 5) The signalized intersection at Westwood Street at Kingsway Avenue will operate well i.e. LOS C (Good) to LOS D (Fair) overall for all base condition scenarios though individual movements are nearing capacity. With the addition of Phase 1 and Phase 2 site traffic, the level of service remains okay i.e. LOS C (Good) to LOS E (Poor), overall for the year 2025 and 2030 scenarios. Individual movements however, are nearing or are over capacity.
- 6) The signalized intersection at Dixon Street at Kingsway Avenue will operate very well i.e. LOS A (Excellent) to LOS B (Very Good), overall for all scenarios without and with addition of Phase 1 and Phase 2 site traffic.
- 7) The signalized intersection at Maple Street at Kingsway Avenue will operate well i.e. LOS B (Very Good) to LOS D (Fair), overall for all base condition scenarios though individual movements are nearing capacity or over capacity. With the addition of Phase 1 and Phase 2 site traffic, the level of service remains okay i.e. LOS B (Very Good) to LOS E (Poor), overall for the year 2025 and 2030 scenarios. Individual movements however, are nearing or are over capacity.
- 8) The unsignalized intersection at Gately Avenue at Kingsway Avenue will operate well i.e. LOS A (Excellent) and LOS B (Very Good) overall, for all scenarios without and with the addition of Phase 1 and Phase 2 site traffic. However, the northbound movements experience significant delay, particularly in the PM peak hour.
- 9) To improve safety and the level of service for Gately Avenue at Kingsway Avenue, CTS considered two options for the 2022 base traffic condition and Phase 1 site

traffic:

- Right-In/Right-Out only at the intersection of Gately Avenue and Kingsway Avenue; and
- o A westbound left turn lane mirrored by a receiving lane for the northbound left turn movement, on Kingsway Avenue at Gately Avenue.

Based on the capacity analysis, the overall level of service is acceptable for both options however, Gately Avenue northbound is approaching capacity in the PM peak hour with the right-in/right-out option and the westbound left turn lane/receiving lane option.

- 10) To improve safety and the level of service for Gately Avenue at Kingsway Avenue, CTS considered three options for the 2025 and 2030 base traffic condition and Phase 1 and Phase 2 site traffic:
 - Right-In/Right-Out only at the intersection of Gately Avenue and Kingsway Avenue.
 - A westbound left turn lane mirrored by a receiving lane for the northbound left turn movement, on Kingsway Avenue at Gately Avenue.
 - Right-In/Right-Out at the intersection of Gately Avenue and Kingsway Avenue and a Chine Avenue Connection.

Based on the capacity analysis, the overall level of service is acceptable for all options however, Gately Avenue is approaching capacity in the AM peak hour and exceeding capacity in the PM peak hour with the right-in/right-out option and the westbound left turn lane/receiving lane option.

The level of service on Gately remains acceptable with the Right-In/Right-Out at the intersection of Gately Avenue and Kingsway Avenue and a Chine Avenue Connection.

11) As per the City of Port Coquitlam *Zoning Bylaw 40787 - Parking and Development Management*, an eleven (11) vehicle parking space variance is being sought. The bicycle parking and loading space requirements are met.

9.0 RECOMMENDATIONS

Based on the data, analysis and conclusions documented by this study, the following is recommended that:

- 1. The City of Port Coquitlam accept the data, analysis and conclusions documented by this study.
- Sidewalks be provided along all frontages and that a multi-user pathway connection along Kingsway Avenue to the multi-user pathway network along the Coquitlam River, be provided.
- 3. For Phase 1 build-out:
 - That an interim westbound left turn lane mirrored by a receiving lane for the northbound left turn movement on Kingsway Avenue at Gately Avenue, be constructed; and
 - Signal timings be optimized.
- 4. For Phase 1 and Phase 2 build-out:
 - The Chine Avenue connection be constructed;
 - The intersection of Kingsway Avenue at Gately Avenue be right-in/right-out only;
 and
 - Signal timings be optimized.

Note – The analysis by CTS was based on a general estimate of the potential density for Phase 2. Given the timing of the development of Phase 2 remains unclear at this point, CTS expects that the Chine Avenue connection or potentially signalizing Kingsway at Gately Avenue will be reviewed by the City of Port Coquitlam during the development application process for Phase 2.

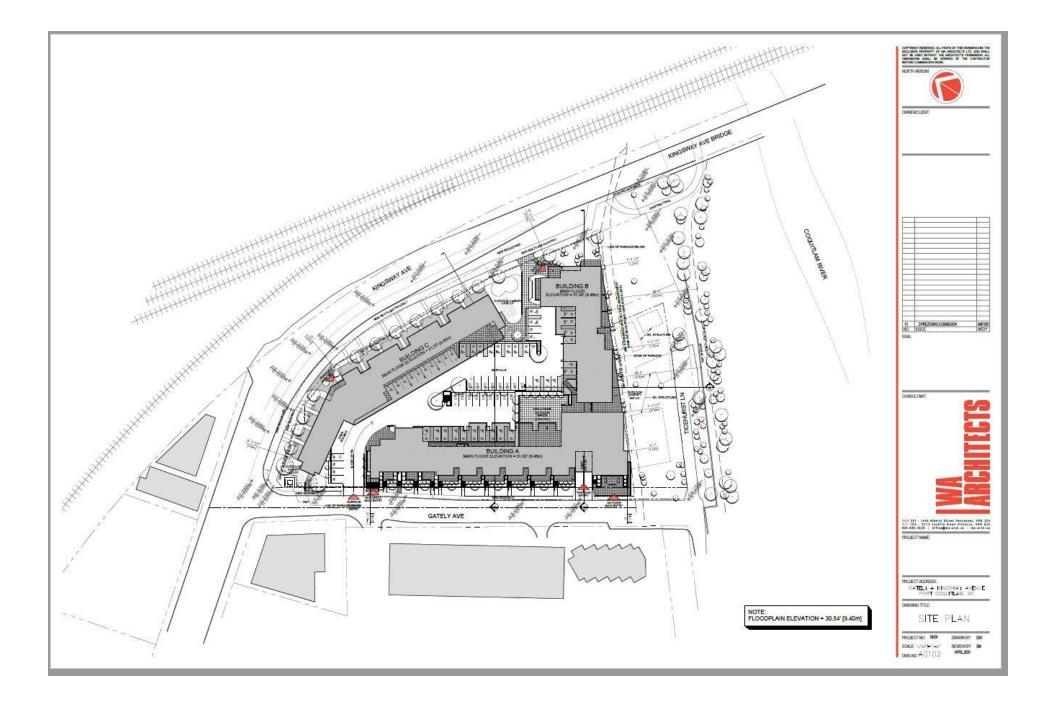
- 5. For 5 years post Phase 1 and Phase 2 build-out:
 - Signal timings be optimized.
- 6. Given vehicle ownership amongst residents of affordable non-market housing is generally low, good access to transport modal infrastructure and with reference to Institute of Transportation Engineers (ITE) *Parking Generation Manual 5th Edition Affordable Housing (Code 223)* wherein lower parking space rates are noted for affordable non-market housing, it would be reasonable to accept an (11) vehicle parking space variance or a 0.96 parking space per unit parking space rate for this development site.

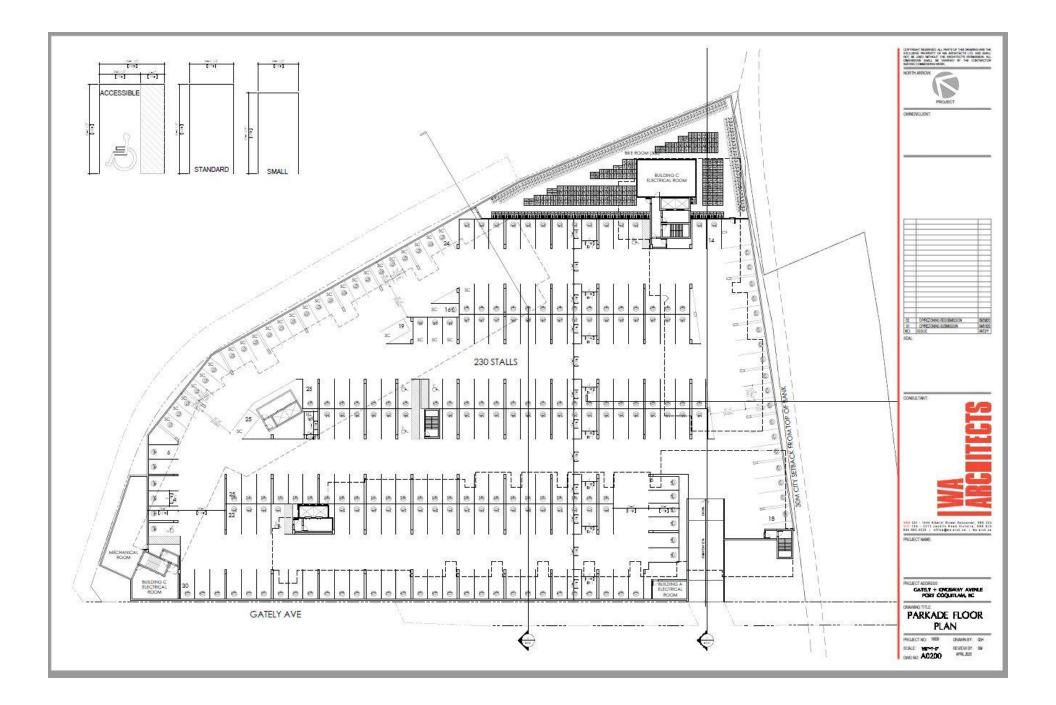
In closing, CTS would like to thank Peak Tower Developments for the opportunity to assist you and your team with this unique assignment. Please call the undersigned should there be any questions and/or comments pertaining to this report or its contents.

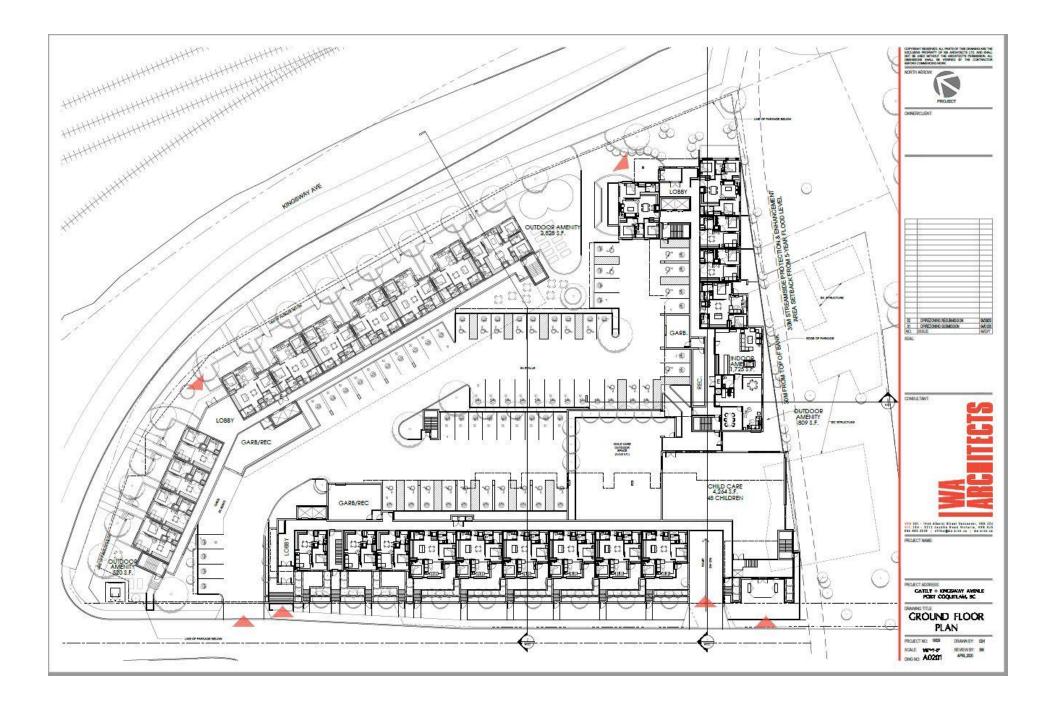
Yours truly,

CREATIVE TRANSPORTATION SOLUTIONS LTD.

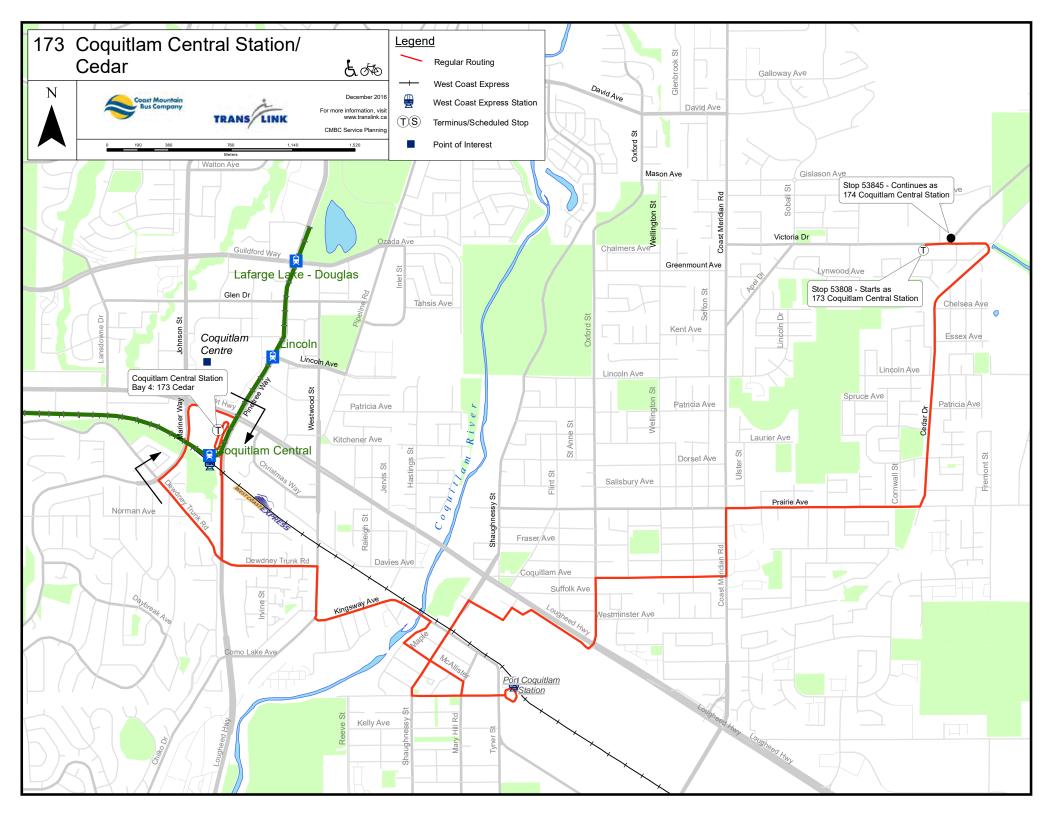
Brent A. Dozzi, P.Eng. Senior Traffic Engineer

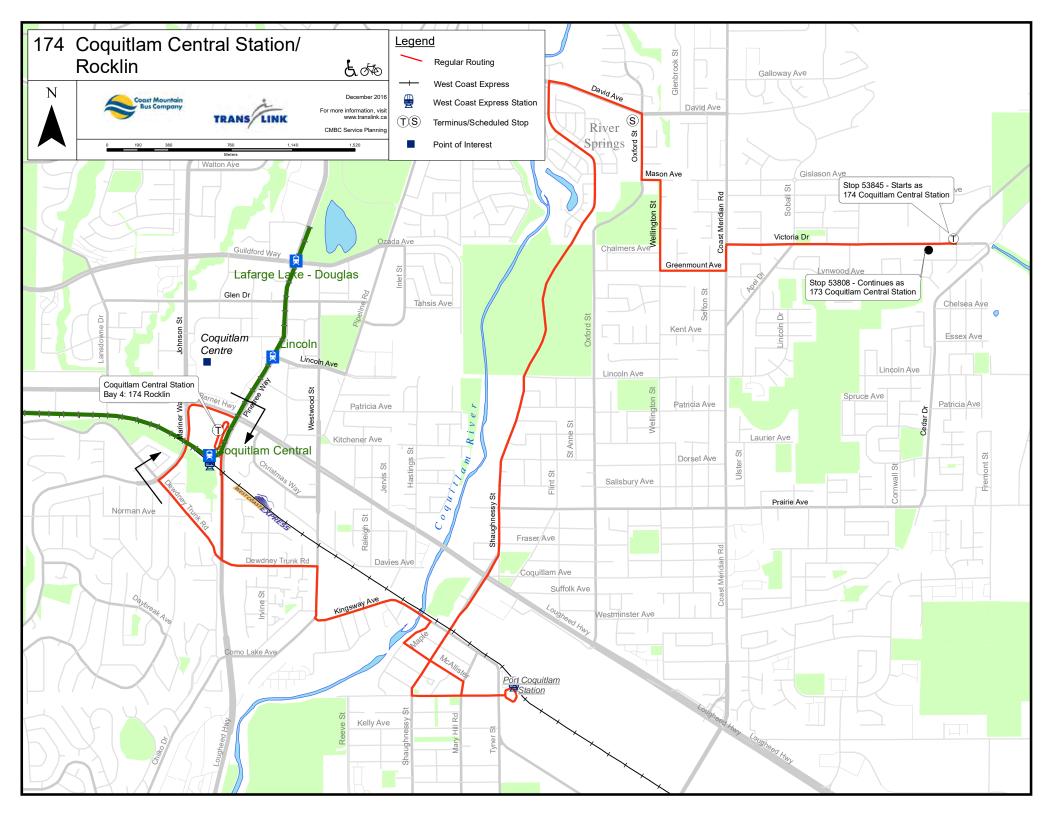

Phone: (604) 936-6190 x237 E-mail: bdozzi@cts-bc.com

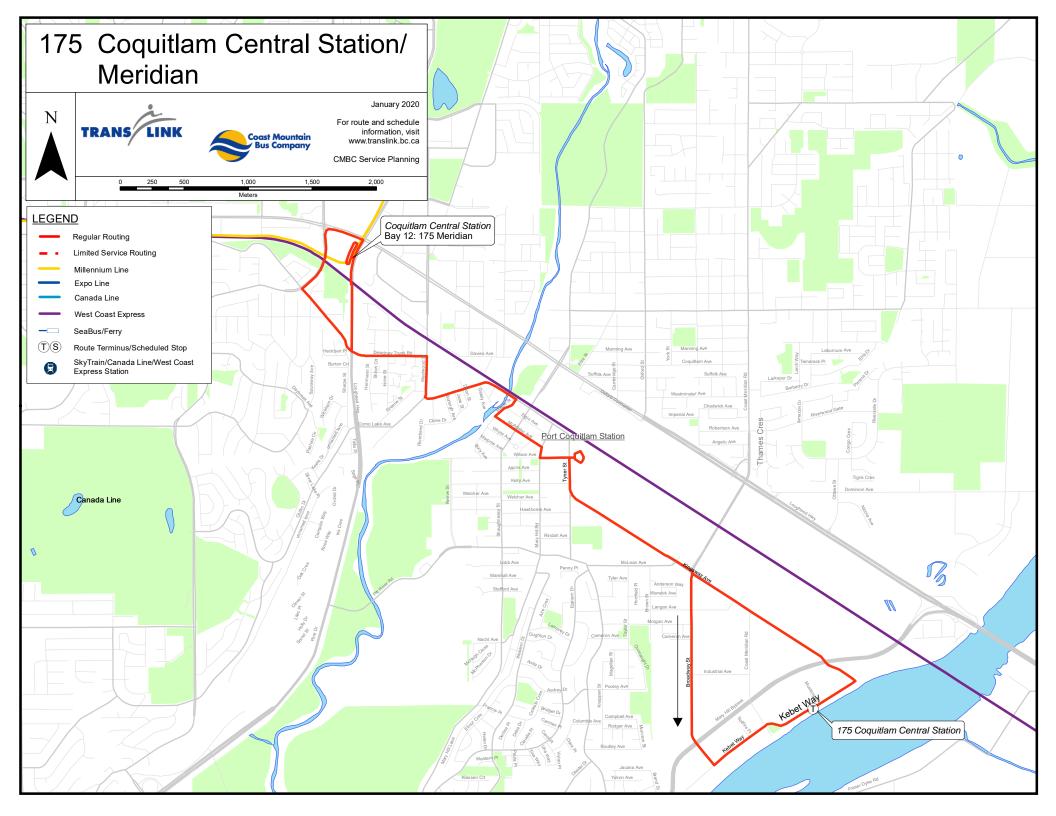

APPENDICES



Appendix A Site Plan







Appendix B Transit Route Diagrams

Appendix C Turning Movement Count Summary Sheets

Westwood St & Kingsway Ave

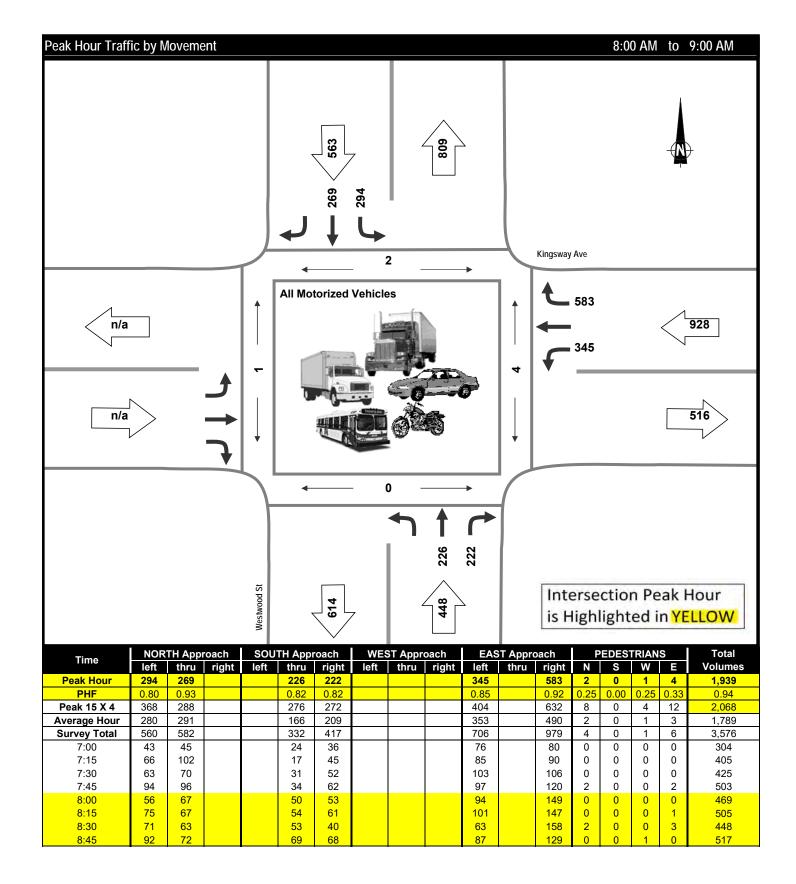
Tuesday, January 21, 2020

Vehicle Classification Summary

#7163: Affordable Housing Project Traffic Impact Study Port Coquitlam Project: Municipality: Weather:

Rain

			Vel	nicle Classifica	tion	
Time Period	Entering Intersection	Passenger Cars	Heavy Vehicles (3 or more axles)			Total
Morning	Volume	3,547	29			3,576
(07:00 - 09:00)	%	99.2%	0.8%			100.0%
Midday	Volume					
(00:00 - 00:00)	%					
Afternoon	Volume	6,940	11			6,951
(15:00 - 18:00)	%	99.8%	0.2%			100.0%
Total	Volume	10,487	40			10,527
(5 Hours)	%	99.6%	0.4%			100.0%

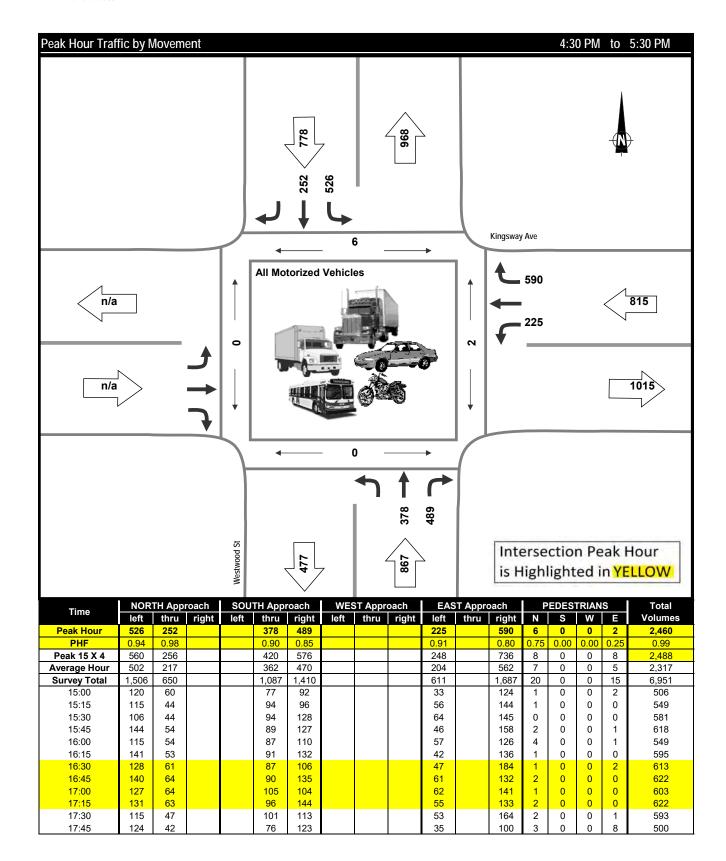


Tuesday, January 21, 2020

Municipality: Port Coquitlam Weather: Rain

Vehicle Class: All Motorized Vehicles

Morning Peak Period Project: #7163: Affordable Housing Project Traffic Impact Study

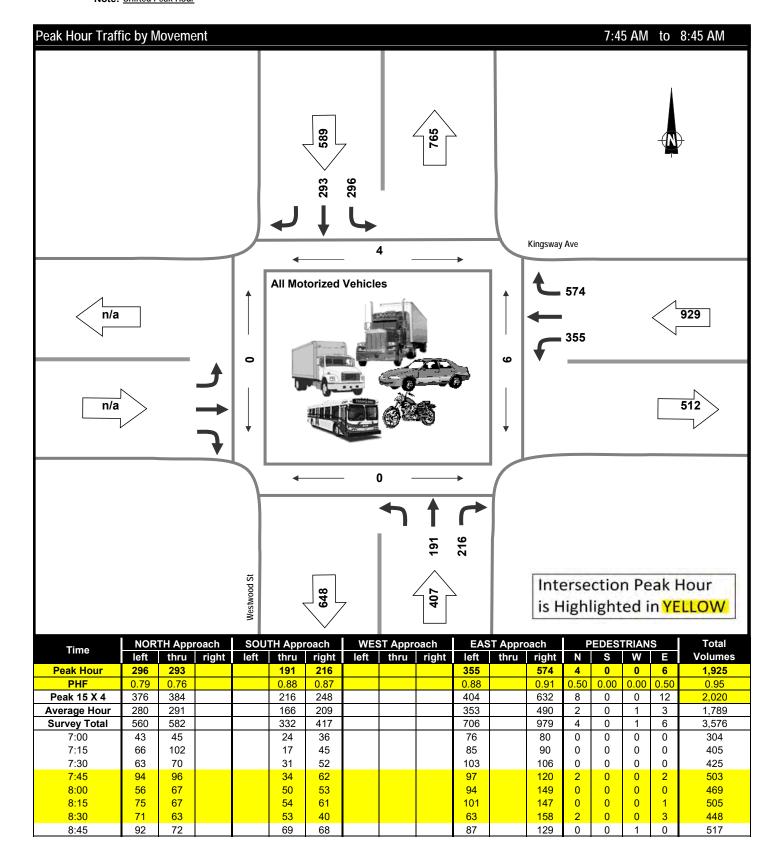


Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

Weather: Rain

Vehicle Class: All Motorized Vehicles

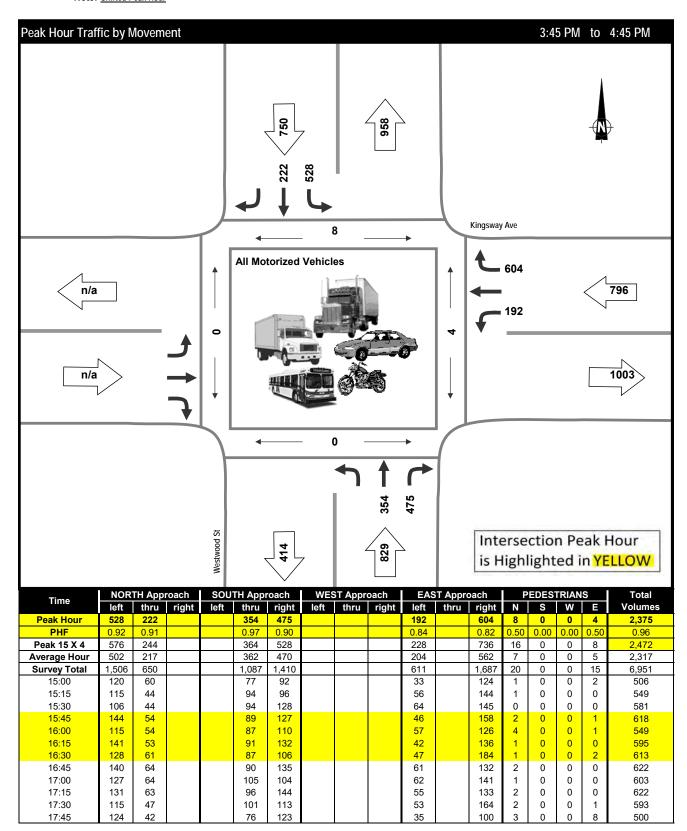

Tuesday, January 21, 2020

Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam Weather: Rain

Vehicle Class: All Motorized Vehicles
Note: Shifted Peak Hour

Morning Peak Period



Project: #7163: Affordable Housing Project Traffic Impact Study

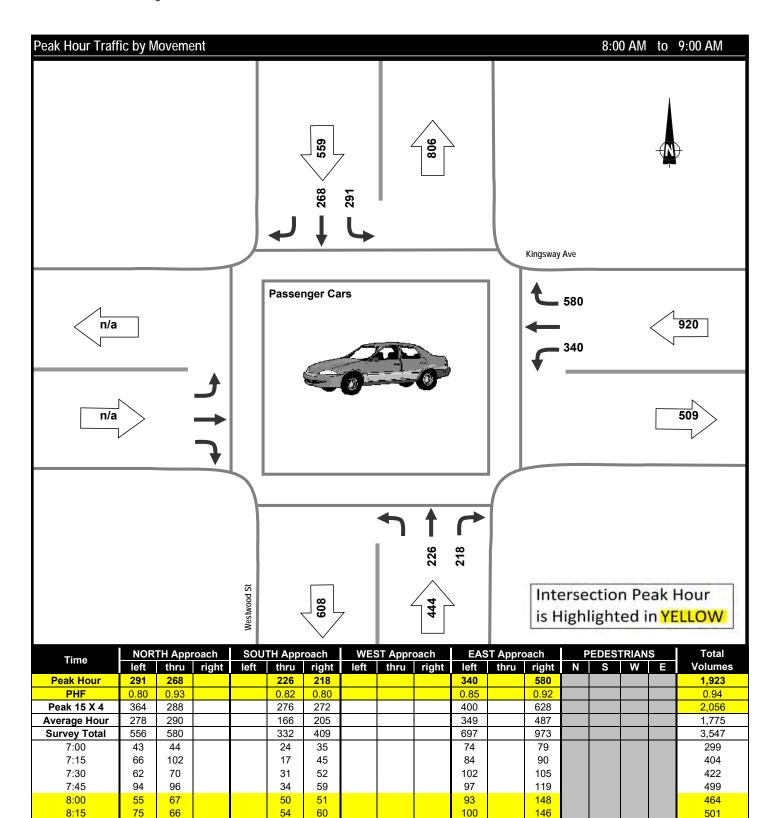
Municipality: Port Coquitlam

Weather: Rain

Vehicle Class: All Motorized Vehicles
Note: Shifted Peak Hour

8:30

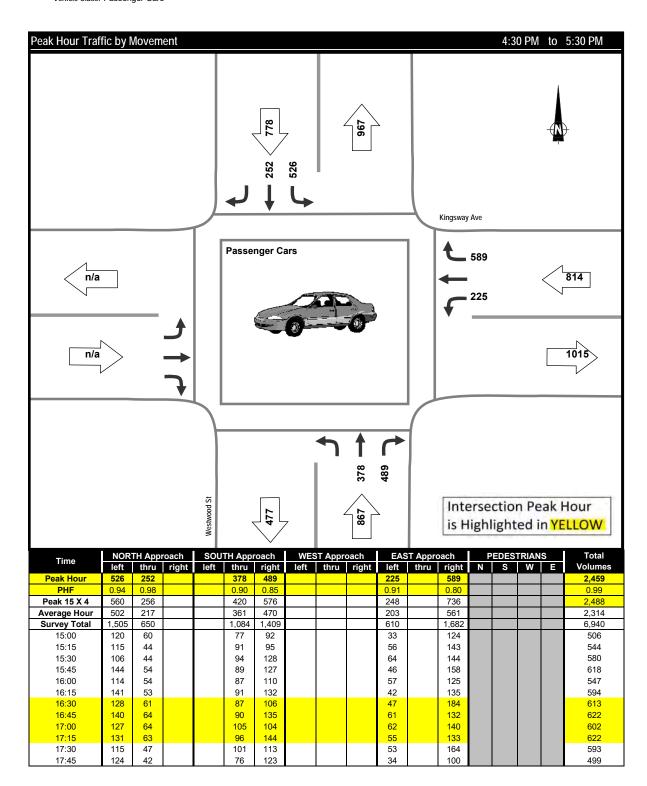
8:45


Tuesday, January 21, 2020

Morning Peak Period

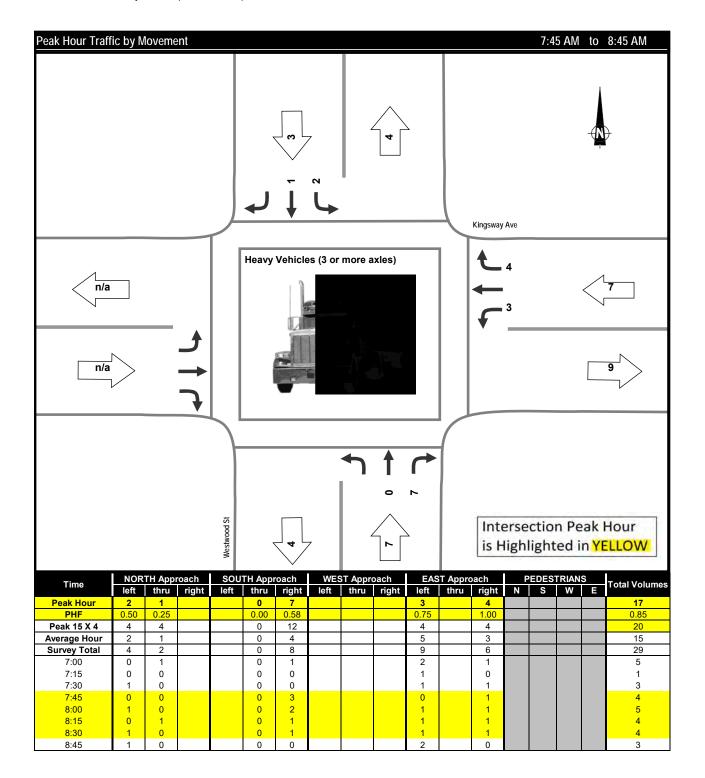
Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam Weather: Rain


Vehicle Class: Passenger Cars

Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam Weather: Rain Vehicle Class: Passenger Cars

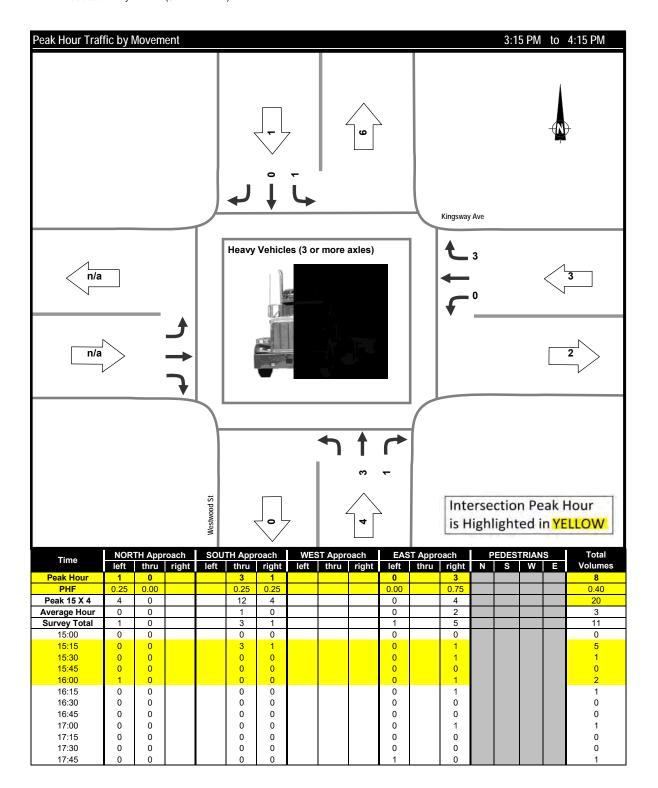


Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

Weather: Rain

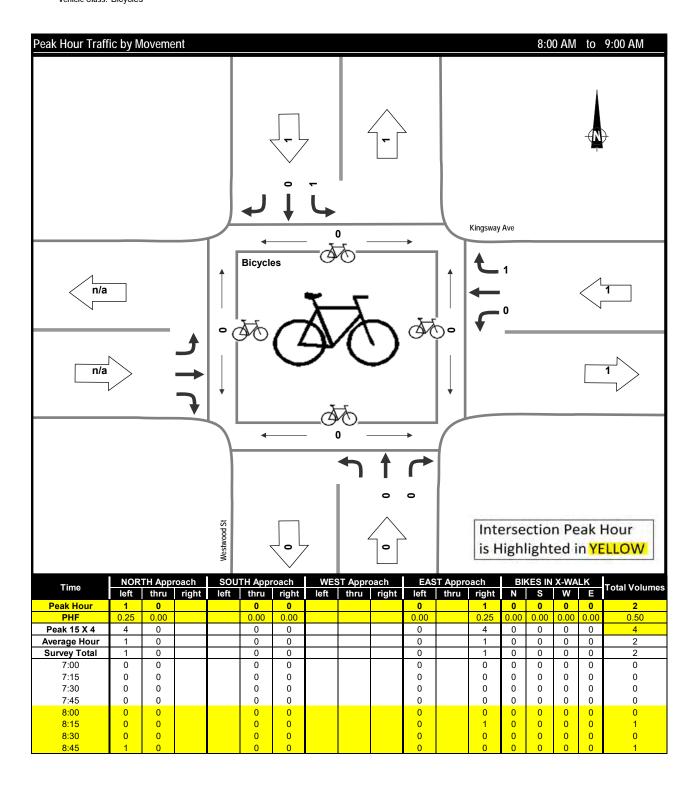
Vehicle Class: Heavy Vehicles (3 or more axles)



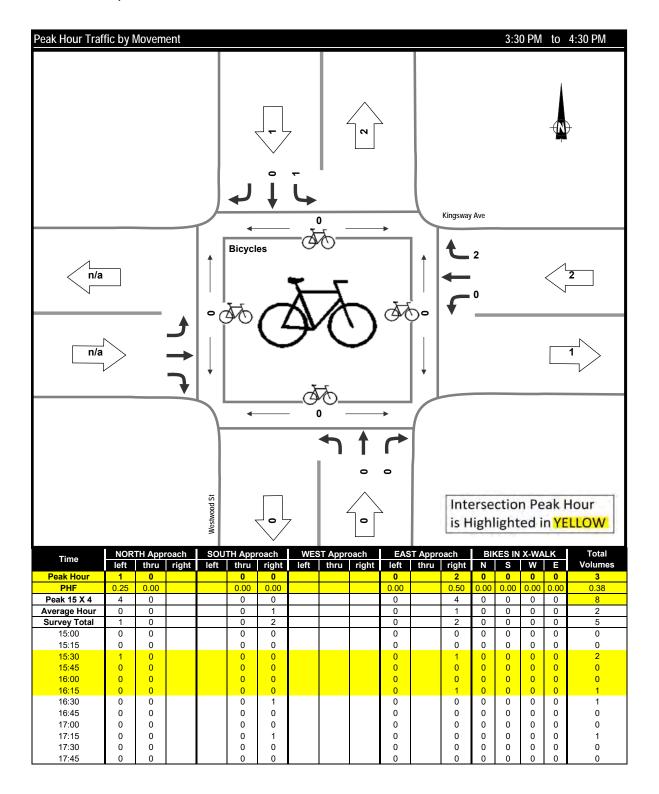
Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

Weather: Rain


Vehicle Class: Heavy Vehicles (3 or more axles)

Project: #7163: Affordable Housing Project Traffic Impact Study


Municipality: Port Coquitlam Weather: Rain Vehicle Class: Bicycles

Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam Weather: Rain Vehicle Class: Bicycles

Gately Ave & Kingsway Ave

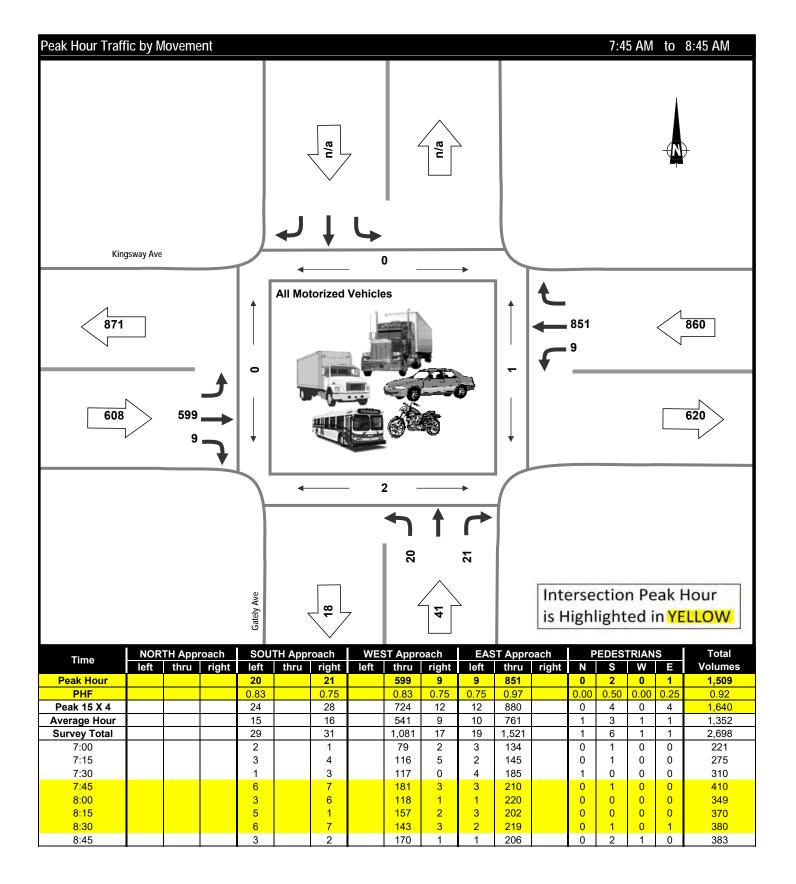
Tuesday, January 21, 2020

Vehicle Classification Summary

Project: Municipality: Weather: #7163: Affordable Housing Project Traffic Impact Study Port Coquitlam

Rain

			Ve	hicle Classification	
Time Period Entering Intersection	Entering Intersection	Passenger Cars	Heavy Vehicles (3 or more axles)		Total
Morning	Volume	2,669	29		2,698
(07:00 - 09:00)	%	98.9%	1.1%		100.0%
Midday	Volume				
(00:00 - 00:00)	%				
Afternoon	Volume	5,542	11		5,553
(15:00 - 18:00)	%	99.8%	0.2%		100.0%
Total	Volume	8,211	40		8,251
(5 Hours)	%	99.5%	0.5%		100.0%

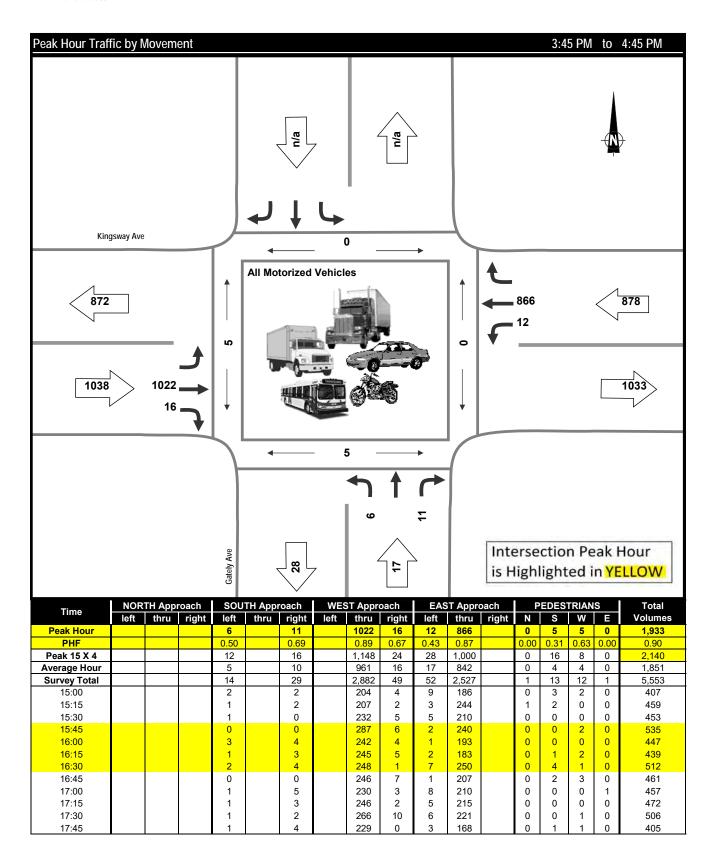

Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

Weather: Rain

Vehicle Class: All Motorized Vehicles

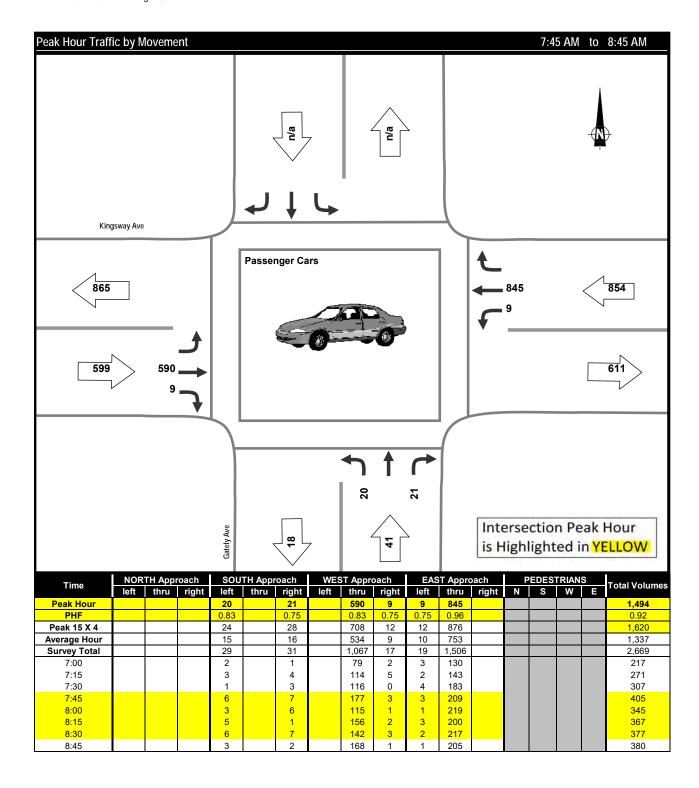
Morning Peak Period


Project: #7163: Affordable Housing Project Traffic Impact Study

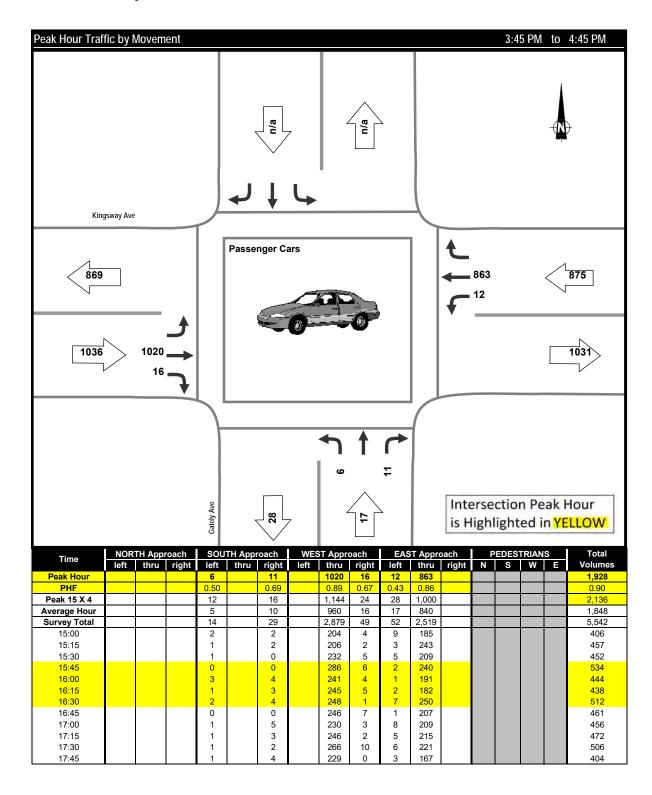
Municipality: Port Coquitlam

Weather: Rain

Vehicle Class: All Motorized Vehicles

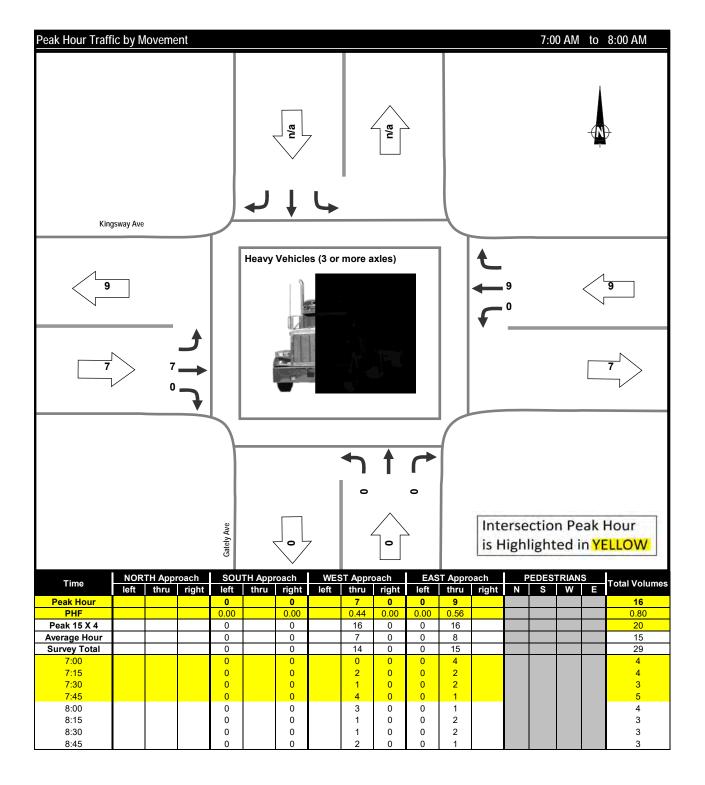

Afternoon Peak Period

Project: #7163: Affordable Housing Project Traffic Impact Study


Municipality: Port Coquitlam Weather: Rain Vehicle Class: Passenger Cars

Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam Weather: Rain Vehicle Class: Passenger Cars

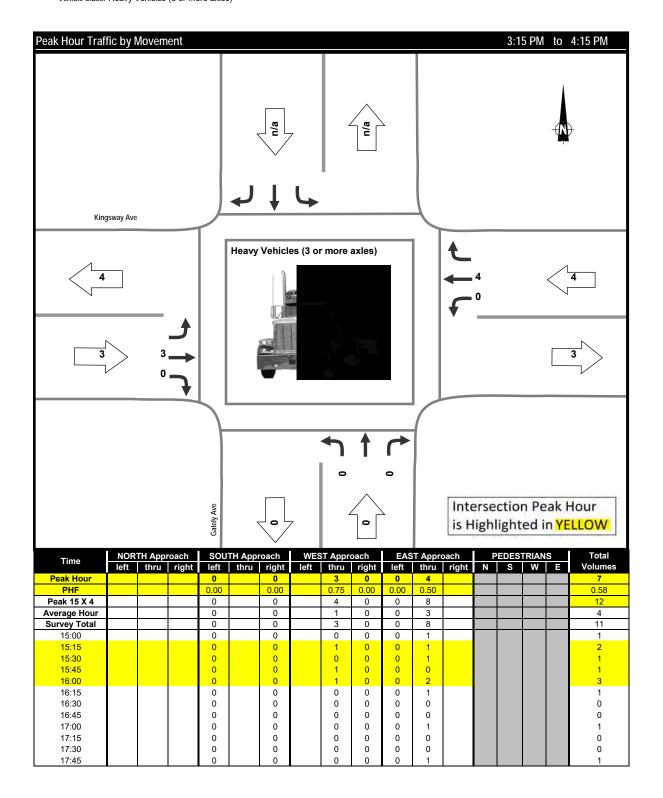


Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

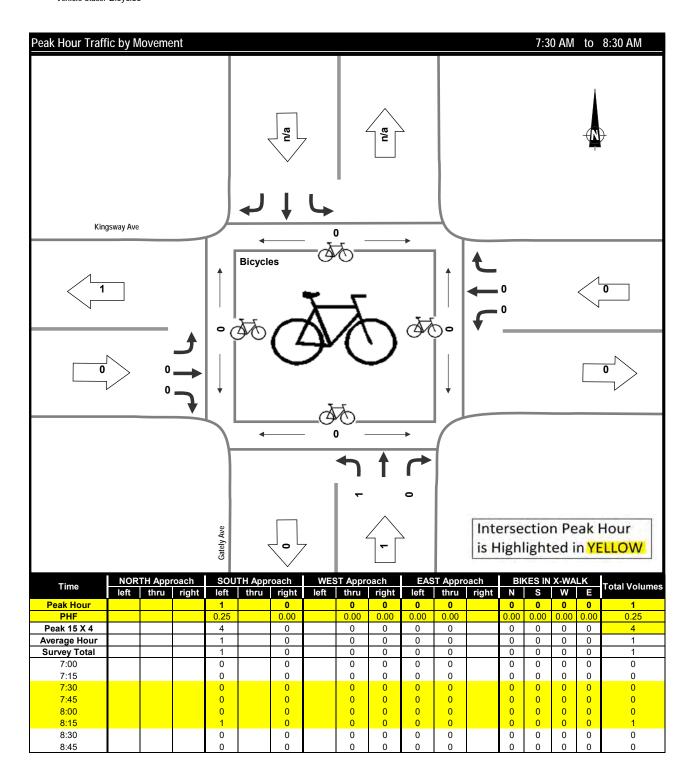
Weather: Rain

Vehicle Class: Heavy Vehicles (3 or more axles)



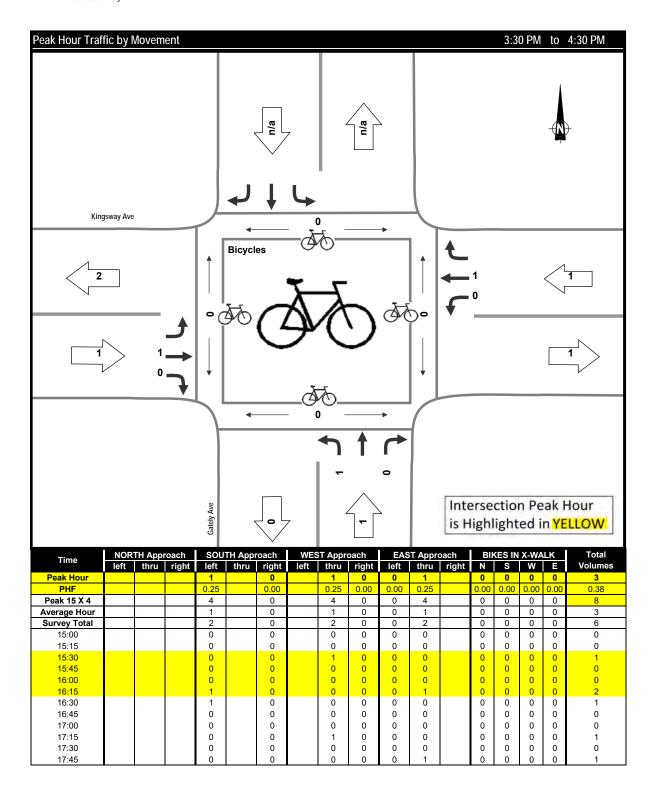
Municipality: Port Coquitlam Weather: Rain

Vehicle Class: Heavy Vehicles (3 or more axles)



Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam Weather: Rain Vehicle Class: Bicycles



Project: #7163: Affordable Housing Project Traffic Impact Study

Afternoon Peak Period

Municipality: Port Coquitlam Weather: Rain Vehicle Class: Bicycles

Maple St & Kingsway Ave

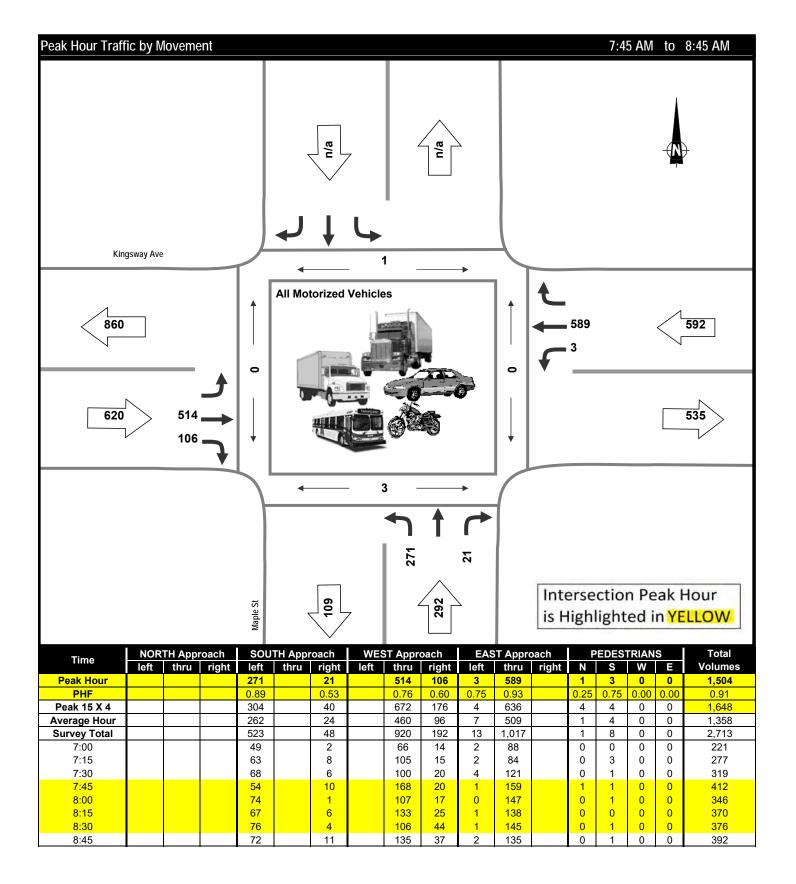
Tuesday, January 21, 2020

Vehicle Classification Summary

#7163: Affordable Housing Project Traffic Impact Study Port Coquitlam Project: Municipality: Weather:

Rain

			Vel	hicle Classification	
Time Period	Entering Intersection	Passenger Cars	Heavy Vehicles (3 or more axles)		Total
Morning	Volume	2,682	31		2,713
(07:00 - 09:00)	%	98.9%	1.1%		100.0%
Midday	Volume	0	0		0
(00:00 - 00:00)	%	0.0%	0.0%		#DIV/0!
Afternoon	Volume	5,617	11		5,628
(15:00 - 18:00)	%	99.8%	0.2%		100.0%
Total	Volume	8,299	42		8,341
(5 Hours)	%	99.5%	0.5%		100.0%

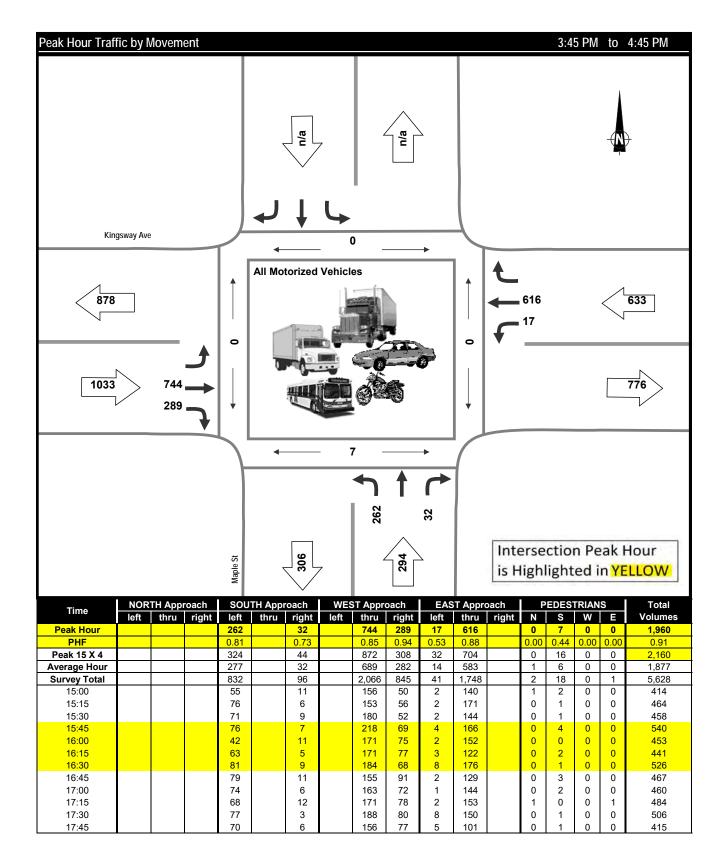

Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

Weather: Rain

Vehicle Class: All Motorized Vehicles

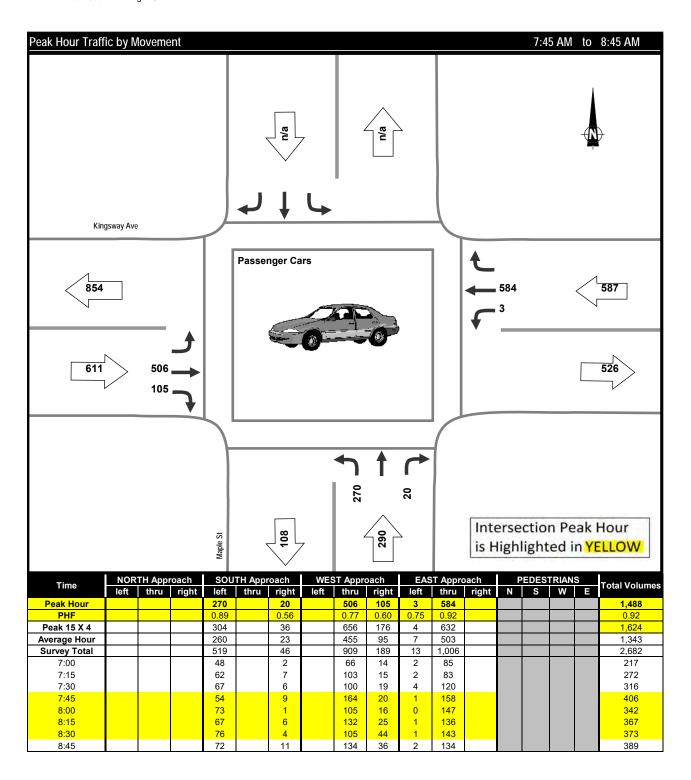
Morning Peak Period



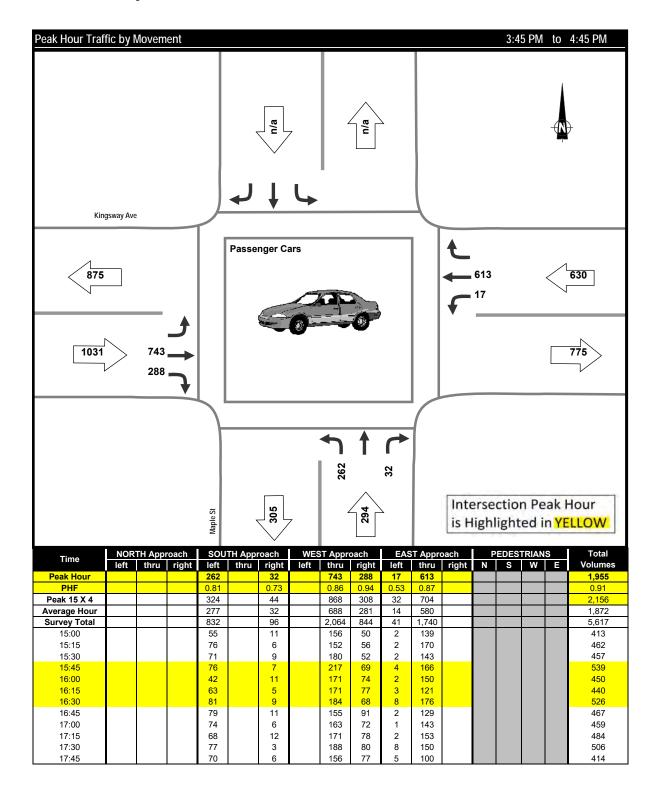
Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

Weather: Rain

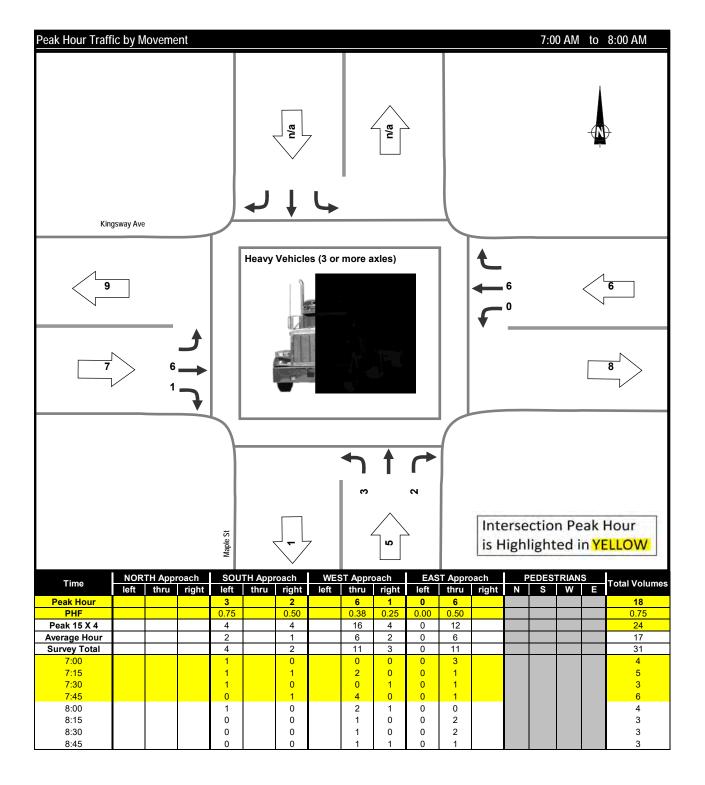

Vehicle Class: All Motorized Vehicles

Project: #7163: Affordable Housing Project Traffic Impact Study


Municipality: Port Coquitlam Weather: Rain Vehicle Class: Passenger Cars

Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam Weather: Rain Vehicle Class: Passenger Cars

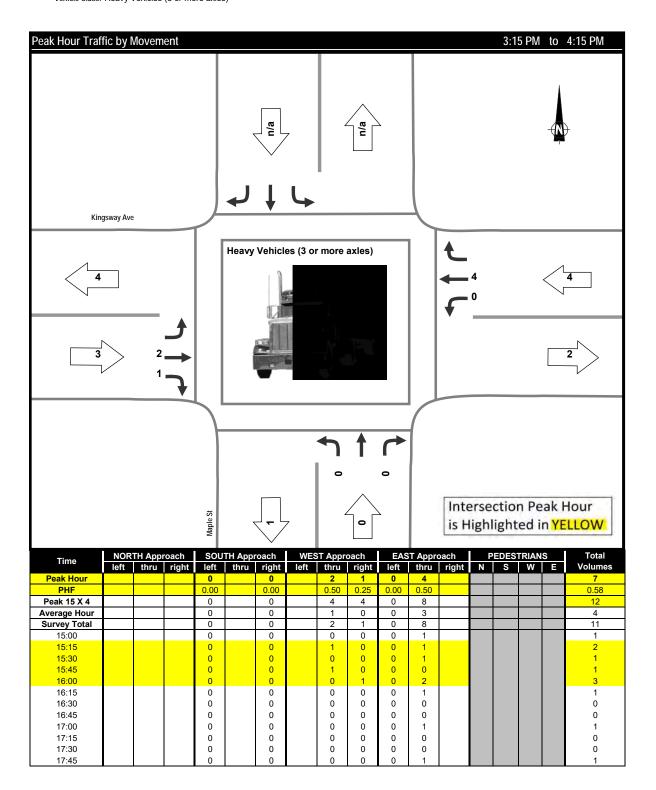


Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

Weather: Rain

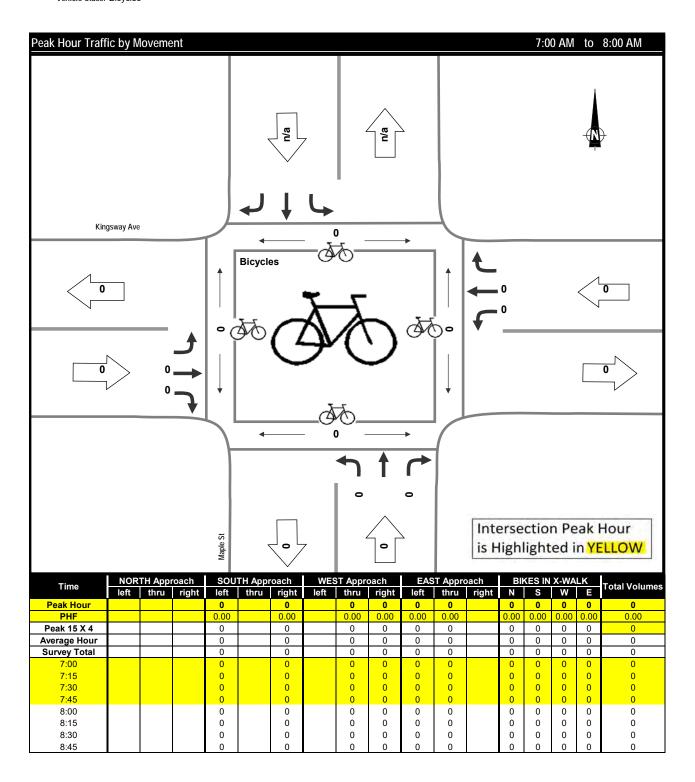
Vehicle Class: Heavy Vehicles (3 or more axles)



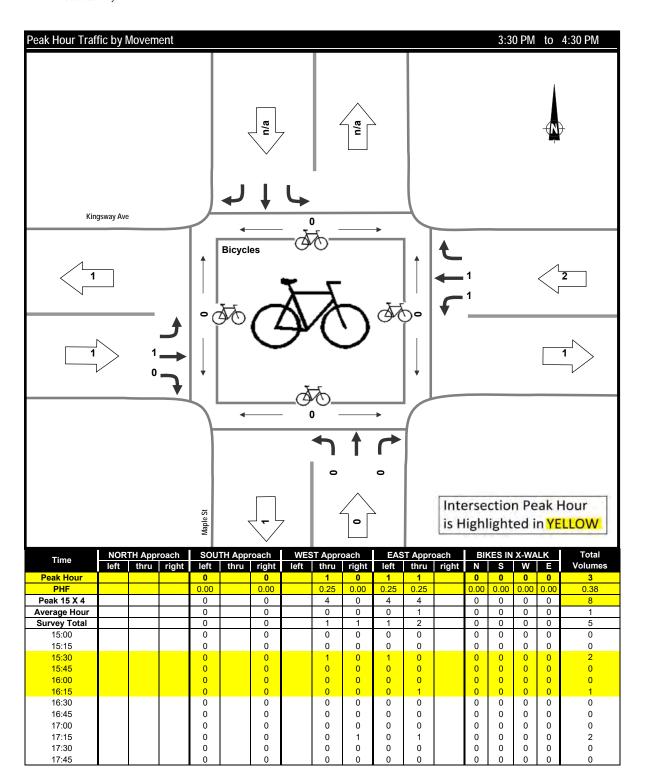
Project: #7163: Affordable Housing Project Traffic Impact Study

Municipality: Port Coquitlam

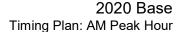
Weather: Rain


Vehicle Class: Heavy Vehicles (3 or more axles)

Project: #7163: Affordable Housing Project Traffic Impact Study


Municipality: Port Coquitlam Weather: Rain Vehicle Class: Bicycles

Project: #7163: Affordable Housing Project Traffic Impact Study


Municipality: Port Coquitlam Weather: Rain Vehicle Class: Bicycles

Appendix D Capacity Analysis Summary Sheets

	/	*	-	لر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	ሻ	7	ሻ	7	*	7
Traffic Volume (vph)	355	574	296	293	191	216
Future Volume (vph)	355	574	296	293	191	216
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850		0.850		0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	. 303	0.950	. 303	0.950	. 300
Satd. Flow (perm)	1676	1500	1676	1500	1676	1500
Right Turn on Red	1310	Yes	1370	Yes	1010	Yes
Satd. Flow (RTOR)		617		272		232
Link Speed (k/h)	50	017	50	212	50	202
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4		14.0		16.0	
Peak Hour Factor	0.93	0.93	0.93	0.93		0.93
		0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%)		647	240	245	205	000
Lane Group Flow (vph)	382	617	318	315	205	232
Turn Type	Prot	Perm	Prot	•	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4				2
Detector Phase	4	4	1	12	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	47.0	47.0	42.0		31.0	31.0
. ,	39.2%				25.8%	
Maximum Green (s)	42.0	42.0	36.6		26.0	26.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0	None		10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
` ,						0.0
Pedestrian Calls (#/hr)	20.0	20.0	26.0	40.0	19.6	
Act Effct Green (s)	28.8	28.8	26.9	49.9	18.6	18.6
Actuated g/C Ratio	0.33	0.33	0.31	0.57	0.21	0.21
v/c Ratio	0.69	0.68	0.62	0.32	0.57	0.46
Control Delay	34.7	6.5	34.2	3.2	41.5	8.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	34.7	6.5	34.2	3.2	41.5	8.3
LOS	С	Α	С	Α		Α
Approach Delay	17.3		18.7		23.9	
Approach LOS	В		В		С	
Queue Length 50th (m)	56.5	0.0	46.0	3.0	31.8	0.0

	F	•	1	لر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Queue Length 95th (m)	113.2	28.3	98.0	17.4	70.9	20.9
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	896	1089	792	1124	563	658
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.57	0.40	0.28	0.36	0.35

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 87.3

Natural Cycle: 65

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.69 Intersection Signal Delay: 19.1 Intersection Capacity Utilization 59.2%

Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15

WBL 368 368 1800 1.00 0.950 1676 0.950 1676	596 596 1800 1.00 0.850 1500 1500 Yes	306 306 1800 1.00 0.950 1676 0.950	224 224 1800 1.00 0.850	199 199 1800 1.00	NER 224 224 1800 1.00
368 368 1800 1.00 0.950 1676 0.950 1676	596 596 1800 1.00 0.850 1500	306 306 1800 1.00 0.950 1676	224 224 1800 1.00 0.850	199 199 1800 1.00	224 224 1800
368 368 1800 1.00 0.950 1676 0.950 1676	596 596 1800 1.00 0.850 1500	306 306 1800 1.00 0.950 1676	224 224 1800 1.00 0.850	199 199 1800 1.00	224 224 1800
368 1800 1.00 0.950 1676 0.950 1676	596 1800 1.00 0.850 1500	306 1800 1.00 0.950 1676	224 1800 1.00 0.850	199 1800 1.00	224 1800
1800 1.00 0.950 1676 0.950 1676	1800 1.00 0.850 1500	1800 1.00 0.950 1676	1800 1.00 0.850	1800 1.00	1800
1.00 0.950 1676 0.950 1676	1.00 0.850 1500	1.00 0.950 1676	1.00 0.850	1.00	
0.950 1676 0.950 1676	0.850 1500 1500	0.950 1676	0.850		1.00
1676 0.950 1676	1500 1500	1676		0.050	0.850
1676 0.950 1676	1500	1676	4500	กนรถ	0.000
0.950 1676	1500		1500	1676	1500
1676		0.950	1500	0.950	1300
		1676	1500	1676	1500
50	100	10/0		10/0	
50			Yes		Yes
50	641	=-	241		241
		50		50	
144.0		193.8		222.3	
		14.0			
0.93	0.93	0.93	0.93	0.93	0.93
(%)					
h) 396	641	329	241	214	241
Prot	Perm		pt+ov	Prot	Perm
4		1	•	2	
	4				2
4		1	12	2	2
Т.	-		1 4	_	_
5.0	5.0	5.0		5.0	5.0
					23.0
					31.8
					26.8
					3.4
					1.6
					-1.0
4.0	4.0	4.0		4.0	4.0
		Lead		Lag	Lag
		Yes		Yes	Yes
3.0	3.0				3.0
					None
					10.0
					8.0
					0.0
,		27 /	50.6		18.9
					0.21
					0.48
					8.3
					0.0
					8.3
	Α		Α		Α
17.5		21.7		24.6	
В		С		С	
	0.0	51.2	0.0	35.6	0.0
	10.4 0.93 %) h) 396 Prot 4 5.0 23.0 48.0 40.0% 43.0 3.4 1.6 -1.0 4.0 None 10.0 8.0 r) 0 30.0 0.34 0.70 35.1 0.0 35.1 D 17.5	10.4 0.93 0.93 %) h) 396 641 Prot Perm 4 4 4 4 5.0 5.0 23.0 23.0 48.0 48.0 40.0% 40.0% 43.0 43.0 3.4 3.4 1.6 1.6 -1.0 -1.0 4.0 4.0 None None 10.0 10.0 8.0 8.0 r) 0 0 30.0 30.0 0.34 0.34 0.70 0.69 35.1 6.5 D A 17.5 B	10.4	10.4 14.0 0.93 0.93 0.93 (%) (h) 396 641 329 241	10.4 14.0 16.0 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.

			•	*		/-
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Queue Length 95th (m)	116.7	28.1	104.2	11.2	73.2	21.2
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	894	1099	735	1105	565	665
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.44	0.58	0.45	0.22	0.38	0.36

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 89.3

Natural Cycle: 65

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.70
Intersection Signal Delay: 20.2

Intersection Signal Delay: 20.2 Intersection LOS: C
Intersection Capacity Utilization 61.1% ICU Level of Service B

Analysis Period (min) 15

	*	*	1	لر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	ሻ	7	ሻ	7	ሻ	7
Traffic Volume (vph)	403	638	323	236	199	236
Future Volume (vph)	403	638	323	236	199	236
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	0.850	1.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1300	0.950	1300	0.950	1300
Satd. Flow (perm)	1676	1500	1676	1500	1676	1500
()	1070	Yes	1070	Yes	1070	Yes
Right Turn on Red						
Satd. Flow (RTOR)	50	686		233		254
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4		14.0		16.0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%)						
Lane Group Flow (vph)	433	686	347	254	214	254
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4				2
Detector Phase	4	4	1	12	2	2
Switch Phase	•					
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	48.0	48.0	42.0		30.0	30.0
Total Split (%)		40.0%			25.0%	
,						
Maximum Green (s)	43.0	43.0	36.6		25.0	25.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0.0	0.0			0.0	0.0
Act Effct Green (s)	32.6	32.6	29.1	52.7	19.3	19.3
Actuated g/C Ratio	0.35	0.35	0.31	0.56	0.21	0.21
v/c Ratio	0.35	0.33	0.67	0.30	0.62	0.50
Control Delay	37.7	6.7	37.9	2.9	46.3	8.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	37.7	6.7	37.9	2.9	46.3	8.7
LOS	D	Α	D	Α	D	Α
Approach Delay	18.7		23.1		25.9	
Approach LOS	В		С		С	
Queue Length 50th (m)	73.2	0.0	58.4	1.7	38.4	0.0

			•	*		/-
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Queue Length 95th (m)	130.1	30.0	108.3	13.9	74.8	22.2
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	848	1098	733	1062	501	626
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.51	0.62	0.47	0.24	0.43	0.41

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 94

Natural Cycle: 70

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.75 Intersection Signal Delay: 21.5 Intersection Capacity Utilization 64.1%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

	_	*	-	لر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	ሻ	*	ሻ	7	*	7
Traffic Volume (vph)	382	618	320	322	210	233
Future Volume (vph)	382	618	320	322	210	233
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	0.850	1.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	1000	0.950	1000
Satd. Flow (perm)	1676	1500	1676	1500	1676	1500
Right Turn on Red	1070	Yes	1070	Yes	1070	Yes
Satd. Flow (RTOR)		665		244		251
,	50	000	50	244	50	201
Link Speed (k/h)					50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4	0.00	14.0	0.00	16.0	0.00
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%						
Lane Group Flow (vph)		665	344	346	226	251
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4				2
Detector Phase	4	4	1	12	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	47.0	47.0	41.0		32.0	32.0
Total Split (%)		39.2%			26.7%	
Maximum Green (s)	42.0	42.0	35.6		27.0	27.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
. ,						
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0	0			0	0
Act Effct Green (s)	31.5	31.5	29.3	53.9	20.3	20.3
Actuated g/C Ratio	0.34	0.34	0.31	0.57	0.22	0.22
v/c Ratio	0.73	0.70	0.66	0.36	0.63	0.48
Control Delay	37.9	6.8	37.6	4.8	45.0	8.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	37.9	6.8	37.6	4.8	45.0	8.2
LOS	D	Α	D	Α	D	Α
Approach Delay	18.7		21.1		25.6	
Approach LOS	В		С		С	
Queue Length 50th (m)	69.8	0.0	57.5	8.5	40.6	0.0

			•	*	/	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Queue Length 95th (m)	124.1	29.4	108.5	26.9	77.1	21.7
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	824	1075	709	1095	537	651
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.50	0.62	0.49	0.32	0.42	0.39

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 94

Natural Cycle: 65

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.73
Intersection Signal Delay: 20.9
Intersection Capacity Utilization 63.3%

Intersection LOS: C
ICU Level of Service B

Analysis Period (min) 15

	*	*	-	لر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	7	ሻ	7	*	7
Traffic Volume (vph)	455	705	350	322	210	254
Future Volume (vph)	455	705	350	322	210	254
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	0.850	1.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	1000	0.950	1000
Satd. Flow (perm)	1676	1500	1676	1500	1676	1500
Right Turn on Red	1070	Yes	1070	Yes	1070	Yes
		758		205		273
Satd. Flow (RTOR)	ΕO	750	ΕO	205	ΕO	213
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4		14.0		16.0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%						
Lane Group Flow (vph)		758	376	346	226	273
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4				2
Detector Phase	4	4	1	12	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	50.0	50.0	41.0		29.0	29.0
Total Split (%)		41.7%			24.2%	
Maximum Green (s)	45.0	45.0	35.6		24.0	24.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
· ,	-1.0	-1.0	-1.4			-1.0
Lost Time Adjust (s)					-1.0	
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0	0			0	0
Act Effct Green (s)	37.2	37.2	31.3	55.8	20.3	20.3
Actuated g/C Ratio	0.37	0.37	0.31	0.55	0.20	0.20
v/c Ratio	0.80	0.74	0.73	0.38	0.67	0.53
Control Delay	40.9	6.8	42.8	6.8	51.4	8.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.9	6.8	42.8	6.8	51.4	8.9
LOS	40.9 D	Α	42.0 D	Α	51.4 D	ο.9
	20.2	A	25.6	A	28.1	A
Approach LOS	20.2 C				28.1 C	
Approach LOS		0.0	C 76.6	15.0		0.0
Queue Length 50th (m)	99.5	0.0	76.6	15.2	48.5	0.0

	F	*	1	لِر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Queue Length 95th (m)	148.4	30.5	120.5	35.9	79.8	23.5
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	803	1113	645	989	436	592
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.61	0.68	0.58	0.35	0.52	0.46
Intonocation Common and						

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 101.4

Natural Cycle: 80

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.80 Intersection Signal Delay: 23.4 Intersection Capacity Utilization 69.4%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

3: Westwood St & Kingsway Ave Splits and Phases:

*	*	-	لر	•	/
WBL	WBR	SBL	SBR	NEL	NER
					7
					254
					254
					1800
					1.00
1.00		1.00		1.00	0.850
0.950	0.000	0.950	0.000	0.950	0.000
	1500		1500		1500
	1300		1300		1300
	1500		1500		1500
1070		10/0		1070	Yes
50	725		218		273
0.93	0.93	0.93	0.93	0.93	0.93
)					
441	725	375	378	246	273
Prot	Perm	Prot	pt+ov	Prot	Perm
4		1	12	2	
	4			_	2
4		1	12	2	2
	•			_	_
5.0	5.0	5.0		5.0	5.0
					23.0
					31.0
					26.0
					3.4
					1.6
					-1.0
4.0	4.0	4.0		4.0	4.0
		Lead		Lag	Lag
		Yes		Yes	Yes
3.0	3.0	5.0		3.0	3.0
		None			None
					10.0
					8.0
					0.0
		31.3	57 O		21.4
					0.22
					0.51
					8.3
					0.0
					8.3
	Α		Α		Α
С		С		С	
86.1	0.0	72.0	15.6	49.8	0.0
	410 410 410 1800 1.00 0.950 1676 0.950 1676 50 144.0 10.4 0.93) 441 Prot 4 5.0 23.0 47.0 39.2% 42.0 3.4 1.6 -1.0 4.0 None 10.0 8.0 0.33.8 0.34 0.77 41.2 0.0 41.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	410 674 410 674 1800 1800 1.00 0.850 0.950 1676 1500 0.950 1676 1500 Yes 725 50 144.0 10.4 0.93 0.93 441 725 Prot Perm 4 4 4 5.0 5.0 23.0 23.0 47.0 47.0 39.2% 39.2% 42.0 42.0 3.4 3.4 1.6 1.6 -1.0 -1.0 4.0 4.0 None 10.0 10.0 8.0 8.0 0 0 33.8 33.8 0.34 0.34 0.77 0.73 41.2 7.2 D A 20.0 C	410 674 349 410 674 349 1800 1800 1800 1.00 1.00 1.00 0.850 0.950 0.950 1676 1500 1676 0.950 0.950 1676 1500 1676 Yes 725 50 50 144.0 193.8 10.4 14.0 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	410 674 349 352 410 674 349 352 1800 1800 1800 1.00 1.00 1.00 1.00 0.850 0.950 1676 1500 1676 1500 0.950 0.950 1676 1500 1676 1500 Yes Yes 725 218 50 50 144.0 193.8 10.4 14.0 0.93 0.93 0.93 0.93 441 725 375 378 Prot Perm Prot pt+ov 4 1 12 4 4 4 1 12 5.0 5.0 5.0 23.0 23.0 10.4 47.0 47.0 42.0 39.2% 39.2% 35.0% 42.0 42.0 36.6 3.4 3.4 3.4 1.6 1.6 2.0 -1.0 -1.0 -1.4 4.0 4.0 4.0 Lead Yes 3.0 3.0 5.0 None None None 10.0 10.0 8.0 8.0 0 0 33.8 33.8 31.3 57.0 0.34 0.34 0.32 0.57 0.77 0.73 0.71 0.40 41.2 7.2 40.8 6.4 0.0 0.0 0.0 0.0 41.2 7.2 40.8 6.4 0.0 0.0 0.0 0.0 41.2 7.2 40.8 6.4 0.0 0.0 0.0 0.0 41.2 7.2 40.8 6.4 0.0 0.0 0.0 0.0 41.2 7.2 40.8 6.4 0.0 0.0 0.0 0.0 41.2 7.2 40.8 6.4 0.0 0.0 23.6 C C	410 674 349 352 229 1800 1800 1800 1800 1800 1800 1.00 1.00 0.850 0.950

			•	*	/	/-
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Queue Length 95th (m)	135.3	31.9	118.3	37.6	85.0	22.8
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	771	1081	681	1045	484	627
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.57	0.67	0.55	0.36	0.51	0.44

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 99.3

Natural Cycle: 75

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 22.8 Intersection LOS: C
Intersection Capacity Utilization 67.8% ICU Level of Service C

Analysis Period (min) 15

	F	*	-	لر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	7	ሻ	7	*	7
Traffic Volume (vph)	489	761	379	352	229	275
Future Volume (vph)	489	761	379	352	229	275
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	0.850	1.00	0.850	1.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	1000	0.950	1000
Satd. Flow (perm)	1676	1500	1676	1500	1676	1500
Right Turn on Red	1070	Yes	1070	Yes	1070	Yes
Satd. Flow (RTOR)		746		180		296
,	5 0	740	ΕO	100	ΕO	290
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4	0.55	14.0	0.05	16.0	0.00
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%)						
Lane Group Flow (vph)	526	818	408	378	246	296
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4				2
Detector Phase	4	4	1	12	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	50.0	50.0	41.0		29.0	29.0
Total Split (%)		41.7%			24.2%	
Maximum Green (s)	45.0	45.0	35.6		24.2 / 0	24.2 /0
						3.4
Yellow Time (s)	3.4	3.4	3.4		3.4	
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0	0			0	0
Act Effct Green (s)	40.2	40.2	33.3	58.9	21.4	21.4
Actuated g/C Ratio	0.37	0.37	0.31	0.55	0.20	0.20
v/c Ratio	0.84	0.80	0.79	0.33	0.74	0.20
Control Delay	45.1	10.3	47.8	8.9	56.5	8.9
-						
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.1	10.3	47.8	8.9	56.5	8.9
LOS	D	В	D	Α	E	Α
Approach Delay	23.9		29.1		30.5	
Approach LOS	С		С		С	
Queue Length 50th (m)	115.9	11.4	92.3	25.1	57.1	0.0

				*		/-
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Queue Length 95th (m)#	#174.7	66.7 ‡	[‡] 140.6	47.2	86.9	24.5
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	744	1081	598	958	404	586
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.71	0.76	0.68	0.39	0.61	0.51

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 107.4

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 26.8 Intersection LOS: C
Intersection Capacity Utilization 74.2% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	*	*	1	لر	*	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	7	ሻ	7	*	7
Traffic Volume (vph)	192	604	528	222	354	475
Future Volume (vph)	192	604	528	222	354	475
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97	1.00		0.99	0.98
Frt		0.850	1.00	0.850	0.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	1000	0.950	1000
Satd. Flow (perm)	1676	1458	1669	1500	1657	1470
Right Turn on Red	1070	Yes	1009	Yes	1007	Yes
Satd. Flow (RTOR)		657		241		480
	50	007	50	24 I	50	400
Link Speed (k/h)						
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4	_	14.0		16.0	
Confl. Peds. (#/hr)	0.00	8	4	0.00	8	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	209	657	574	241	385	516
Turn Type	Prot	Perm		pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4				2
Detector Phase	4	4	1	12	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	29.0	29.0	52.0		39.0	39.0
		24.2%			32.5%	
Maximum Green (s)	24.0	24.0	46.6		34.0	34.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag	7.0	7.0	Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
	2.0	2.0				
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0	0			0	0
Act Effct Green (s)	20.0	20.0	42.8	77.4	30.4	30.4
Actuated g/C Ratio	0.19	0.19	0.40	0.73	0.29	0.29
v/c Ratio	0.66	0.81	0.85	0.21	0.80	0.68
Control Delay	52.6	12.4	43.3	1.0	50.2	9.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	52.6	12.4	43.3	1.0	50.2	9.4
LOS	D	В	D	Α	D	Α
Approach Delay	22.1		30.8	- , ,	26.9	
Typicacii Delay	۲۷.۱		50.0		20.3	

		(4)		•		/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Approach LOS	С		С		С	
Queue Length 50th (m)	47.3	0.0	123.3	0.0	85.0	6.3
Queue Length 95th (m)	73.8	42.9	#193.8	6.6	#134.9	41.8
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	412	853	791	1233	576	820
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.51	0.77	0.73	0.20	0.67	0.63

Intersection Summary

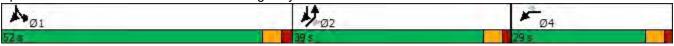
Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 105.8

Natural Cycle: 90

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.85

Intersection Signal Delay: 26.5 Intersection LOS: C
Intersection Capacity Utilization 73.7% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	F	*	-	لر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	*	ሻ	7	*	7
Traffic Volume (vph)	200	626	547	231	368	493
Future Volume (vph)	200	626	547	231	368	493
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.97	1.00	1.00	0.99	0.98
Frt		0.850	1.00	0.850	0.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	1000	0.950	1000
Satd. Flow (perm)	1676	1458	1669	1500	1658	1470
Right Turn on Red	1070	Yes	1003	Yes	1000	Yes
Satd. Flow (RTOR)		680		251		472
. ,	ΕO	000	ΕO	231	ΕO	412
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4	_	14.0		16.0	
Confl. Peds. (#/hr)		8	4		8	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	217	680	595	251	400	536
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4				2
Detector Phase	4	4	1	12	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	29.0	29.0	52.7		38.3	38.3
Total Split (%)		24.2%				31.9%
	24.2 /0	24.2 /0				
Maximum Green (s)			47.3		33.3	33.3
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0	0			0	0
Act Effct Green (s)	20.8	20.8	44.6	79.7	31.0	31.0
Actuated g/C Ratio	0.19	0.19	0.41	0.73	0.29	0.29
v/c Ratio	0.19	0.19	0.41	0.73	0.29	0.29
Control Delay	54.0	12.6	45.0	1.0	54.6	11.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	54.0	12.6	45.0	1.0	54.6	11.5
LOS	D	В	D	Α	D	В
Approach Delay	22.6		32.0		29.9	

				*		1
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Approach LOS	С		С		С	
Queue Length 50th (m)	49.3	0.0	130.0	0.0	90.8	11.6
Queue Length 95th (m)	76.7	44.8	#203.2	6.7	#145.7	53.3
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	395	863	771	1214	543	795
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.55	0.79	0.77	0.21	0.74	0.67

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 108.7

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 28.1 Intersection LOS: C
Intersection Capacity Utilization 76.0% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	*	•	-	لإ	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	7	ሻ	7	ሻ	7
Traffic Volume (vph)	214	658	581	231	368	530
Future Volume (vph)	214	658	581	231	368	530
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97	1.00		0.99	0.98
Frt		0.850	1.00	0.850	0.00	0.850
Flt Protected	0.950	5.550	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	.500	0.950	1000
Satd. Flow (perm)	1676	1458	1669	1500	1658	1470
Right Turn on Red	1070	Yes	1009	Yes	1000	Yes
•		715		213		451
Satd. Flow (RTOR)	FO	/ 15	<i>F</i> 0	∠13	5 0	451
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4		14.0		16.0	
Confl. Peds. (#/hr)		8	4		8	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	233	715	632	251	400	576
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4			2	2
Detector Phase	4	4	1	12	2	2
Switch Phase	•	•				
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	28.0	28.0	54.0		38.0	38.0
		23.3%			31.7%	
			45.0%			
Maximum Green (s)	23.0	23.0			33.0	33.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0.0	0.0			0.0	0.0
Act Effct Green (s)	21.1	21.1	47.2	82.6	31.3	31.3
Actuated g/C Ratio	0.19	0.19	0.42	0.74	0.28	0.28
v/c Ratio	0.19	0.19	0.42	0.74	0.26	0.28
Control Delay	58.8	13.2	48.1	1.5	57.5	17.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	58.8	13.2	48.1	1.5	57.5	17.3
LOS	Е	В	D	Α	Е	В
Approach Delay	24.4		34.8		33.8	

			53.58	*		1
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Approach LOS	С		С		С	
Queue Length 50th (m)	54.2	0.0	144.3	2.3	93.4	26.8
Queue Length 95th (m)	83.4	47.7	#218.6	9.1	#146.8	78.8
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	366	877	763	1200	518	766
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.64	0.82	0.83	0.21	0.77	0.75

Intersection Summary

Area Type: Other

Cycle Length: 120

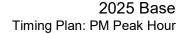
Actuated Cycle Length: 111.9

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 31.0 Intersection LOS: C
Intersection Capacity Utilization 78.6% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	/	•	-	لر	<i>•</i>	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	7	*	1	*	7
Traffic Volume (vph)	210	659	572	244	389	514
Future Volume (vph)	210	659	572	244	389	514
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.97	1.00	1.00	0.99	0.98
Frt		0.850	1.00	0.850	0.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	1000	0.950	1000
Satd. Flow (perm)	1676	1458	1669	1500	1658	1470
Right Turn on Red	1070	Yes	1009	Yes	1030	Yes
Satd. Flow (RTOR)	50	696	 0	236	Ε0.	464
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4		14.0		16.0	
Confl. Peds. (#/hr)		8	4		8	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	228	716	622	265	423	559
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4				2
Detector Phase	4	4	1	12	2	2
Switch Phase	-	T		1 2	_	
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	29.0	29.0	52.0		39.0	39.0
		24.2%			32.5%	
Maximum Green (s)	24.0	24.0	46.6		34.0	34.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0	0.0			0.0	0
Act Effct Green (s)	21.4	21.4	45.9	82.7	32.8	32.8
Actuated g/C Ratio	0.19	0.19	0.41	0.74	0.29	0.29
v/c Ratio	0.19	0.19	0.41	0.74	0.29	0.29
Control Delay				1.4		
	56.9	15.0	51.1		57.6	13.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	56.9	15.0	51.1	1.4	57.6	13.7
LOS	E	В	D	Α	Е	В
Approach Delay	25.1		36.3		32.6	

	0	100				
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Approach LOS	С		D		С	
Queue Length 50th (m)	52.2	4.0	142.9	1.7	98.1	17.6
Queue Length 95th (m)	80.7	#61.5	#220.1	8.9	#156.1	65.4
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	378	868	727	1198	530	782
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.60	0.82	0.86	0.22	0.80	0.71

Area Type: Other

Cycle Length: 120

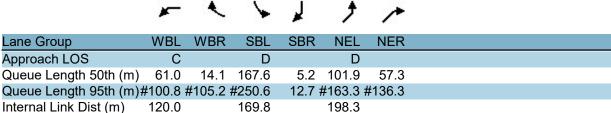
Actuated Cycle Length: 112.2

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.91

Intersection Signal Delay: 31.2 Intersection LOS: C
Intersection Capacity Utilization 79.1% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	*	•	-	لر	<i>•</i>	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	7	*	7	*	*
Traffic Volume (vph)	237	721	642	244	389	591
Future Volume (vph)	237	721	642	244	389	591
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.97	1.00	1.00	0.99	0.98
Frt		0.850	1.00	0.850	0.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	3.550
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	.000	0.950	1000
Satd. Flow (perm)	1676	1458	1669	1500	1658	1470
Right Turn on Red	1070	Yes	1009	Yes	1000	Yes
		717		180		431
Satd. Flow (RTOR)	FO	/ 1 /	FO	180	FO	431
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4		14.0		16.0	
Confl. Peds. (#/hr)		8	4		8	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	258	784	698	265	423	642
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4			2	2
Detector Phase	4	4	1	12	2	2
Switch Phase	•					
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	28.0	28.0	55.0		37.0	37.0
		23.3%			30.8%	
,						
Maximum Green (s)	23.0	23.0	49.6		32.0	32.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0.0	0.0			0.0	0.0
Act Effct Green (s)	22.5	22.5	51.1	87.3	32.2	32.2
Actuated g/C Ratio	0.19	0.19	0.43	0.74	0.27	0.27
v/c Ratio	0.19	0.19	0.43	0.74	0.27	0.27
Control Delay	65.5	21.9	59.0	2.1	69.4	30.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	65.5	21.9	59.0	2.1	69.4	30.5
LOS	E	С	Е	Α	E	С
Approach Delay	32.7		43.3		45.9	

Internal Link Dist (m) Turn Bay Length (m) Base Capacity (vph) 342 868 469 722 726 1167 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0 Reduced v/c Ratio 0.75 0.90 0.96 0.23 0.90 0.89

Intersection Summary

Area Type: Other

Cycle Length: 120

Lane Group

Approach LOS

Actuated Cycle Length: 117.8

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.96

Intersection Signal Delay: 40.6 Intersection LOS: D Intersection Capacity Utilization 84.4% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	/	*	-	لر	•	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	7	*	7	*	7
Traffic Volume (vph)	229	719	624	266	425	560
Future Volume (vph)	229	719	624	266	425	560
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97	1.00		0.99	0.98
Frt		0.850	1.00	0.850	0.00	0.850
Flt Protected	0.950	0.000	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	1000	0.950	1000	0.950	1000
Satd. Flow (perm)	1676	1458	1669	1500	1659	1470
Right Turn on Red	1070	Yes	1009	Yes	1039	Yes
•						
Satd. Flow (RTOR)	50	692	50	191	50	437
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4		14.0		16.0	
Confl. Peds. (#/hr)		8	4		8	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%))					
Lane Group Flow (vph)	249	782	678	289	462	609
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4			2	2
Detector Phase	4	4	1	12	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
	28.0	28.0	53.2		38.8	38.8
Total Split (s)						
		23.3%			32.3%	
Maximum Green (s)	23.0	23.0	47.8		33.8	33.8
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0.0	0.0			0.0	0
Act Effct Green (s)	22.3	22.3	49.2	87.7	34.5	34.5
Actuated g/C Ratio	0.19	0.19	0.42	0.74	0.29	0.29
v/c Ratio	0.79	0.94	0.97	0.25	0.94	0.83
Control Delay	64.1	26.0	62.3	2.2	70.6	21.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	64.1	26.0	62.3	2.2	70.6	21.6
LOS	Е	С	Е	Α	Е	С
Approach Delay	35.2		44.3		42.7	

Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Approach LOS	D		D		D	
Queue Length 50th (m)	58.5	19.2	163.9	6.1	112.3	41.8
Queue Length 95th (m)	#95.1	#115.4	#246.8	13.9	#179.0 #	[‡] 105.9
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	341	848	699	1167	495	741
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.73	0.92	0.97	0.25	0.93	0.82

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 118

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 40.7 Intersection LOS: D
Intersection Capacity Utilization 85.1% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	*	•	-	لر	<i>•</i>	/
Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Lane Configurations	*	7	*	7	*	7
Traffic Volume (vph)	256	781	694	266	425	637
Future Volume (vph)	256	781	694	266	425	637
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	0.97	1.00	1.00	0.99	0.98
Frt		0.850	1.00	0.850	0.00	0.850
Flt Protected	0.950	5.555	0.950	0.000	0.950	0.000
Satd. Flow (prot)	1676	1500	1676	1500	1676	1500
Flt Permitted	0.950	.500	0.950	1000	0.950	1300
Satd. Flow (perm)	1676	1460	1670	1500	1660	1471
Right Turn on Red	1070	Yes	1070	Yes	1000	Yes
		715		157		416
Satd. Flow (RTOR)	FO	/ 15	FO	15/	FO	410
Link Speed (k/h)	50		50		50	
Link Distance (m)	144.0		193.8		222.3	
Travel Time (s)	10.4		14.0		16.0	
Confl. Peds. (#/hr)		8	4		8	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	278	849	754	289	462	692
Turn Type	Prot	Perm	Prot	pt+ov	Prot	Perm
Protected Phases	4		1	12	2	
Permitted Phases		4			2	2
Detector Phase	4	4	1	12	2	2
Switch Phase	•	•	•			
Minimum Initial (s)	5.0	5.0	5.0		5.0	5.0
Minimum Split (s)	23.0	23.0	10.4		23.0	23.0
Total Split (s)	26.0	26.0	51.0		33.0	33.0
		23.6%			30.0%	
Maximum Green (s)	21.0	21.0	45.6		28.0	28.0
Yellow Time (s)	3.4	3.4	3.4		3.4	3.4
All-Red Time (s)	1.6	1.6	2.0		1.6	1.6
Lost Time Adjust (s)	-1.0	-1.0	-1.4		-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0		4.0	4.0
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	5.0		3.0	3.0
Recall Mode	None	None	None		None	None
Walk Time (s)	10.0	10.0			10.0	10.0
Flash Dont Walk (s)	8.0	8.0			8.0	8.0
Pedestrian Calls (#/hr)	0.0	0.0			0.0	0.0
Act Effct Green (s)	22.0	22.0	47.0	80.0	29.0	29.0
Actuated g/C Ratio	0.20	0.20	0.43	0.73	0.26	0.26
v/c Ratio	0.20	0.20	1.05	0.73	1.05	1.00
		35.4				
Control Delay	63.8		80.3	2.7	96.1	50.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	63.8	35.4	80.3	2.7	96.1	50.7
LOS	E	D	F	Α	F	D
Approach Delay	42.4		58.8		68.9	

Timing Plan: AM Peak Hour

		\rightarrow	*	*	2052200		1				*	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			В			Α	
Queue Length 50th (m)		9.4			15.7			3.3			0.0	
Queue Length 95th (m)		18.3			30.0			10.6			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2738			3165			747			771	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.23			0.30			0.09			0.01	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 40.6

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.38

Intersection Signal Delay: 4.2 Intersection LOS: A Intersection Capacity Utilization 50.1% ICU Level of Service A

Analysis Period (min) 15

Timing Plan: AM Peak Hour

I

٧.

		-	*	1	200000		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			В			Α	
Queue Length 50th (m)		9.8			17.0			3.4			0.0	
Queue Length 95th (m)		19.3			32.2			10.9			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		3047			3161			800			820	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.21			0.31			0.09			0.01	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 41.2

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.39

Intersection Signal Delay: 4.3 Intersection LOS: A Intersection Capacity Utilization 52.0% ICU Level of Service A

Analysis Period (min) 15

	۶	→	*	•	•	•	1	†	~	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		473			472			4			4	
Traffic Volume (vph)	4	628	6	16	962	3	38	2	26	4	0	6
Future Volume (vph)	4	628	6	16	962	3	38	2	26	4	0	6
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99			0.99	
Frt		0.999						0.947			0.919	
Flt Protected					0.999			0.972			0.980	
Satd. Flow (prot)	0	3349	0	0	3349	0	0	1613	0	0	1574	0
Flt Permitted		0.950			0.943			0.816			0.838	
Satd. Flow (perm)	0	3181	0	0	3161	0	0	1351	0	0	1343	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			1			28			87	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		155.9			135.0			181.2			78.6	
Travel Time (s)		11.2			9.7			13.0			5.7	
Confl. Peds. (#/hr)	2		3	3		2	3		4	4		3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%												
Lane Group Flow (vph)		685	0	0	1054	0	0	71	0	0	10	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA	_	Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	20.9	20.9		9.9	17.9		23.2	23.2		23.2	23.2	
Total Split (s)	49.1	49.1		9.9	59.0		26.0	26.0		26.0	26.0	
Total Split (%)	57.8%			11.6%	69.4%		30.6%			30.6%		
Maximum Green (s)	44.2	44.2		5.0	54.1		20.8	20.8		20.8	20.8	
Yellow Time (s)	3.4	3.4		3.4	3.4		3.4	3.4		3.4	3.4	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.8	1.8		1.8	1.8	
Lost Time Adjust (s)		-0.9			-0.9			-1.2			-1.2	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0			6.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0			0		0	0		0	0	
Act Effct Green (s)		33.7			33.7			8.6			8.5	
Actuated g/C Ratio		0.79			0.79			0.20			0.20	
v/c Ratio		0.27			0.42			0.24			0.03	
Control Delay		3.4			4.2			13.9			0.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		3.4			4.2			13.9			0.1	
LOS		Α			A			В			Α	
Approach Delay		3.4			4.2			13.9			0.1	
		<u> </u>									V. 1	

I

		-	*	1	2000		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			В			Α	
Queue Length 50th (m)		10.5			19.0			3.6			0.0	
Queue Length 95th (m)		20.4			36.2			11.6			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2999			3161			743			766	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.23			0.33			0.10			0.01	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 42.8

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.42

Intersection Signal Delay: 4.3 Intersection LOS: A Intersection Capacity Utilization 54.2% ICU Level of Service A

Analysis Period (min) 15

Timing Plan: AM Peak Hour

		\rightarrow	*	*	25232		7			•	*	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			В			Α	
Queue Length 50th (m)		10.5			17.9			3.7			0.0	
Queue Length 95th (m)		20.8			34.6			11.5			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		3036			3155			795			829	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.23			0.32			0.10			0.01	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 41.4

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.41

Intersection Signal Delay: 4.4 Intersection LOS: A Intersection Capacity Utilization 54.4% ICU Level of Service A

Analysis Period (min) 15

	۶	→	•	•	+	•	1	1	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		473			472			4			4	
Traffic Volume (vph)	4	652	22	27	995	3	122	2	46	4	0	7
Future Volume (vph)	4	652	22	27	995	3	122	2	46	4	0	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99			0.99	
Frt		0.995						0.964			0.910	
Flt Protected					0.999			0.965			0.984	
Satd. Flow (prot)	0	3333	0	0	3349	0	0	1634	0	0	1563	0
FIt Permitted		0.950			0.927			0.780			0.907	
Satd. Flow (perm)	0	3166	0	0	3108	0	0	1317	0	0	1439	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			1			22			87	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		155.9			135.0			181.2			78.6	
Travel Time (s)		11.2			9.7			13.0			5.7	
Confl. Peds. (#/hr)	2		3	3		2	3		4	4		3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	729	0	0	1102	0	0	182	0	0	12	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	20.9	20.9		9.9	17.9		23.2	23.2		23.2	23.2	
Total Split (s)	46.1	46.1		9.9	56.0		29.0	29.0		29.0	29.0	
Total Split (%)	54.2%	54.2%		11.6%	65.9%		34.1%	34.1%		34.1%	34.1%	
Maximum Green (s)	41.2	41.2		5.0	51.1		23.8	23.8		23.8	23.8	
Yellow Time (s)	3.4	3.4		3.4	3.4		3.4	3.4		3.4	3.4	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.8	1.8		1.8	1.8	
Lost Time Adjust (s)		-0.9			-0.9			-1.2			-1.2	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0			6.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0			0		0	0		0	0	
Act Effct Green (s)		30.2			30.2			13.3			13.3	
Actuated g/C Ratio		0.58			0.58			0.26			0.26	
v/c Ratio		0.39			0.61			0.51			0.03	
Control Delay		7.0			9.2			20.3			0.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		7.0			9.2			20.3			0.1	
LOS		Α			Α			С			Α	
Approach Delay		7.0			9.2			20.3			0.1	

1

		-	*	1	2000		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			С			Α	
Queue Length 50th (m)		16.0			29.3			11.2			0.0	
Queue Length 95th (m)		35.5			63.0			34.1			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2694			2952			663			756	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.27			0.37			0.27			0.02	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 51.7

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.61

Intersection Signal Delay: 9.4 Intersection LOS: A Intersection Capacity Utilization 73.3% ICU Level of Service D

Analysis Period (min) 15

	۶	→	*	•	•	•	1	†	~	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		472			472			4			4	
Traffic Volume (vph)	4	678	7	17	1076	3	41	2	28	4	0	7
Future Volume (vph)	4	678	7	17	1076	3	41	2	28	4	0	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99			0.99	
Frt		0.998						0.947			0.910	
Flt Protected					0.999			0.972			0.984	
Satd. Flow (prot)	0	3345	0	0	3349	0	0	1613	0	0	1563	0
FIt Permitted		0.950			0.942			0.815			0.889	
Satd. Flow (perm)	0	3178	0	0	3158	0	0	1349	0	0	1410	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			1			30			87	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		155.9			135.0			181.2			78.6	
Travel Time (s)		11.2			9.7			13.0			5.7	
Confl. Peds. (#/hr)	2		3	3		2	3		4	4		3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	741	0	0	1178	0	0	76	0	0	12	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	20.9	20.9		9.9	17.9		23.2	23.2		23.2	23.2	
Total Split (s)	50.0	50.0		10.0	60.0		25.0	25.0		25.0	25.0	
Total Split (%)		58.8%			70.6%			29.4%		29.4%		
Maximum Green (s)	45.1	45.1		5.1	55.1		19.8	19.8		19.8	19.8	
Yellow Time (s)	3.4	3.4		3.4	3.4		3.4	3.4		3.4	3.4	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.8	1.8		1.8	1.8	
Lost Time Adjust (s)		-0.9			-0.9			-1.2			-1.2	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0			6.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0			0		0	0		0	0	
Act Effct Green (s)		36.2			36.2			8.9			8.7	
Actuated g/C Ratio		0.80			0.80			0.20			0.19	
v/c Ratio		0.29			0.47			0.26			0.04	
Control Delay		3.4			4.5			15.1			0.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		3.4			4.5			15.1			0.2	
LOS		Α			Α			В			Α	
Approach Delay		3.4			4.5			15.1			0.2	

		\rightarrow	*	*	22000		7			•	*	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			В			Α	
Queue Length 50th (m)		12.0			23.3			4.1			0.0	
Queue Length 95th (m)		23.1			44.1			13.2			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2927			3158			670			729	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.25			0.37			0.11			0.02	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 45.5

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.47

Intersection Signal Delay: 4.5 Intersection LOS: A Intersection Capacity Utilization 59.0% ICU Level of Service B

Analysis Period (min) 15

Timing Plan: AM Peak Hour

٧.

		\rightarrow	*	1	2000		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			В			Α	
Queue Length 50th (m)		12.1			20.8			4.2			0.0	
Queue Length 95th (m)		23.5			40.0			12.9			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2965			3148			734			788	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.25			0.35			0.11			0.02	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 43.4

Natural Cycle: 55

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.44

Intersection Signal Delay: 4.5 Intersection LOS: A Intersection Capacity Utilization 57.5% ICU Level of Service B

Analysis Period (min) 15

	۶	→	*	•	•	•	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		473			473			4			4	
Traffic Volume (vph)	5	709	33	64	1000	4	240	2	48	5	0	7
Future Volume (vph)	5	709	33	64	1000	4	240	2	48	5	0	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99			0.99	
Frt		0.993			0.999			0.977			0.917	
Flt Protected					0.997			0.960			0.981	
Satd. Flow (prot)	0	3325	0	0	3339	0	0	1650	0	0	1572	0
Flt Permitted		0.949			0.853			0.754			0.896	
Satd. Flow (perm)	0	3156	0	0	2857	0	0	1292	0	0	1434	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7			1			13			87	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		155.9			135.0			181.2			78.6	
Travel Time (s)		11.2			9.7			13.0			5.7	
Confl. Peds. (#/hr)	2		3	3		2	3		4	4		3
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	802	0	0	1148	0	0	312	0	0	13	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	20.9	20.9		9.9	17.9		23.2	23.2		23.2	23.2	
Total Split (s)	41.0	41.0		10.0	51.0		34.0	34.0		34.0	34.0	
Total Split (%)		48.2%			60.0%		40.0%			40.0%		
Maximum Green (s)	36.1	36.1		5.1	46.1		28.8	28.8		28.8	28.8	
Yellow Time (s)	3.4	3.4		3.4	3.4		3.4	3.4		3.4	3.4	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.8	1.8		1.8	1.8	
Lost Time Adjust (s)		-0.9			-0.9			-1.2			-1.2	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0			6.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0			0		0	0		0	0	
Act Effct Green (s)		36.7			36.7			22.0			22.0	
Actuated g/C Ratio		0.55			0.55			0.33			0.33	
v/c Ratio		0.46			0.74			0.72			0.02	
Control Delay		10.8			15.7			31.2			0.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		10.8			15.7			31.2			0.1	
LOS		В			В			С			Α	
Approach Delay		10.8			15.7			31.2			0.1	

٧.

		\rightarrow	*	1	200		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		В			В			С			Α	
Queue Length 50th (m)		30.6			55.2			33.4			0.0	
Queue Length 95th (m)		54.0			97.0			73.0			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		1997			2096			619			725	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.40			0.55			0.50			0.02	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 67.3

Natural Cycle: 60

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 16.0 Intersection LOS: B
Intersection Capacity Utilization 87.2% ICU Level of Service E

Analysis Period (min) 15

Timing Plan: PM Peak Hour

ı

١.

		\rightarrow	*	1	22,000		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			Α			Α	
Queue Length 50th (m)		17.2			14.1			0.0			0.0	
Queue Length 95th (m)		31.8			26.2			5.5			0.3	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2747			3024			790			769	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.40			0.31			0.08			0.03	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 40

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.44

Intersection Signal Delay: 3.6 Intersection LOS: A Intersection Capacity Utilization 61.7% ICU Level of Service B

Analysis Period (min) 15

2022 Base

Timing Plan: PM Peak Hour

ı

		\rightarrow	*	1	200000		1	T		-	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			Α			Α	
Queue Length 50th (m)		18.2			14.8			0.0			0.0	
Queue Length 95th (m)		34.7			28.5			5.8			0.4	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		3145			3014			694			678	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.37			0.33			0.10			0.04	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 41.4

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.45

Intersection Signal Delay: 3.7 Intersection LOS: A Intersection Capacity Utilization 63.6% ICU Level of Service B

Analysis Period (min) 15

	۶	→	•	•	+	•	1	1	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		472			472			4			4	
Traffic Volume (vph)	10	1101	16	30	919	2	26	0	35	11	0	14
Future Volume (vph)	10	1101	16	30	919	2	26	0	35	11	0	14
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.98			0.98	
Frt		0.998						0.922			0.925	
Flt Protected					0.998			0.979			0.978	
Satd. Flow (prot)	0	3345	0	0	3346	0	0	1568	0	0	1581	0
FIt Permitted		0.946			0.896			0.850			0.825	
Satd. Flow (perm)	0	3164	0	0	3004	0	0	1358	0	0	1325	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3						87			87	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		155.9			135.0			181.2			78.6	
Travel Time (s)		11.2			9.7			13.0			5.7	
Confl. Peds. (#/hr)	9		5	5		9	4		11	11	-	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%		0.00	0.00		0.00		0.00	0.00				0.00
Lane Group Flow (vph)		1225	0	0	1034	0	0	66	0	0	27	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2	_		6			8			4	•	
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase							_					
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.9	22.9		9.9	24.5		23.2	23.2		23.2	23.2	
Total Split (s)	51.9	51.9		9.9	61.8		23.2	23.2		23.2	23.2	
Total Split (%)		61.1%			72.7%			27.3%		27.3%		
Maximum Green (s)	47.0	47.0		5.0	56.9		18.0	18.0		18.0	18.0	
Yellow Time (s)	3.4	3.4		3.4	3.4		3.4	3.4		3.4	3.4	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.8	1.8		1.8	1.8	
Lost Time Adjust (s)		-0.9			-0.9			-1.2			-1.2	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0			6.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0			0		0	0		0	0	
Act Effct Green (s)		35.0			35.0			7.4			7.4	
Actuated g/C Ratio		0.81			0.81			0.17			0.17	
v/c Ratio		0.48			0.43			0.22			0.09	
Control Delay		3.9			3.6			5.8			0.6	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		3.9			3.6			5.8			0.6	
LOS		3.9 A			3.0 A			3.6 A			Α	
Approach Delay		3.9			3.6			5.8			0.6	
Approach Delay		ა.ჟ			3.0			5.0			0.0	

		\rightarrow	*	1	2000		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			Α			Α	
Queue Length 50th (m)		20.3			16.1			0.0			0.0	
Queue Length 95th (m)		38.5			30.8			6.0			0.3	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		3104			3004			672			657	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.39			0.34			0.10			0.04	

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 43.2

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.48

Intersection Signal Delay: 3.8 Intersection LOS: A Intersection Capacity Utilization 64.9% ICU Level of Service C

Analysis Period (min) 15

2025 Base

Timing Plan: PM Peak Hour

I

٧.

		\rightarrow	*	1	22,000		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			Α			Α	
Queue Length 50th (m)		19.6			16.1			0.0			0.0	
Queue Length 95th (m)		38.0			31.7			6.6			0.5	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		3121			2994			681			663	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.38			0.35			0.10			0.04	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 42.4

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.47

Intersection Signal Delay: 3.9 Intersection LOS: A Intersection Capacity Utilization 66.6% ICU Level of Service C

Analysis Period (min) 15

	۶	→	*	•	•	•	1	†	-	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		473			472			4			4	
Traffic Volume (vph)	11	1148	91	54	963	2	73	0	54	12	0	14
Future Volume (vph)	11	1148	91	54	963	2	73	0	54	12	0	14
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.99			0.99	
Frt		0.989						0.942			0.928	
Flt Protected					0.997			0.972			0.977	
Satd. Flow (prot)	0	3308	0	0	3343	0	0	1597	0	0	1585	0
Flt Permitted		0.944			0.820			0.807			0.868	
Satd. Flow (perm)	0	3123	0	0	2749	0	0	1322	0	0	1401	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		16						87			87	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		155.9			135.0			181.2			78.6	
Travel Time (s)		11.2			9.7			13.0			5.7	
Confl. Peds. (#/hr)	9		5	5		9	4		11	11		4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	1359	0	0	1108	0	0	138	0	0	28	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6			8			4		
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.9	22.9		9.9	24.5		23.2	23.2		23.2	23.2	
Total Split (s)	51.9	51.9		9.9	61.8		23.2	23.2		23.2	23.2	
Total Split (%)	61.1%	61.1%		11.6%	72.7%		27.3%	27.3%		27.3%	27.3%	
Maximum Green (s)	47.0	47.0		5.0	56.9		18.0	18.0		18.0	18.0	
Yellow Time (s)	3.4	3.4		3.4	3.4		3.4	3.4		3.4	3.4	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.8	1.8		1.8	1.8	
Lost Time Adjust (s)		-0.9			-0.9			-1.2			-1.2	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0			6.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0			0		0	0		0	0	
Act Effct Green (s)		37.2			37.2			9.7			9.7	
Actuated g/C Ratio		0.73			0.73			0.19			0.19	
v/c Ratio		0.60			0.55			0.43			0.08	
Control Delay		6.5			6.3			14.1			0.5	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		6.5			6.3			14.1			0.5	
LOS		Α			Α			В			Α	
Approach Delay		6.5			6.3			14.1			0.5	

1

		\rightarrow	*	1	200		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			В			Α	
Queue Length 50th (m)		30.7			24.1			3.9			0.0	
Queue Length 95th (m)		65.7			53.0			19.8			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2858			2663			567			598	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.48			0.42			0.24			0.05	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 51.2

Natural Cycle: 70

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.60

Intersection Signal Delay: 6.8 Intersection LOS: A Intersection Capacity Utilization 89.2% ICU Level of Service E

Analysis Period (min) 15

	۶	→	•	•	+	•	1	1	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		472			472			4			4	
Traffic Volume (vph)	11	1222	17	32	1008	2	28	0	37	12	0	14
Future Volume (vph)	11	1222	17	32	1008	2	28	0	37	12	0	14
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			0.98			0.98	
Frt		0.998						0.923			0.928	
Flt Protected					0.998			0.979			0.977	
Satd. Flow (prot)	0	3345	0	0	3346	0	0	1570	0	0	1585	0
Flt Permitted		0.944			0.886			0.848			0.850	
Satd. Flow (perm)	0	3157	0	0	2970	0	0	1357	0	0	1370	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3						87			87	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		155.9			135.0			181.2			78.6	
Travel Time (s)		11.2			9.7			13.0			5.7	
Confl. Peds. (#/hr)	9		5	5		9	4		11	11	-	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%												
Lane Group Flow (vph)	,	1358	0	0	1133	0	0	70	0	0	28	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	-
Protected Phases		2		1	6			8			4	
Permitted Phases	2	_		6			8			4	•	
Detector Phase	2	2		1	6		8	8		4	4	
Switch Phase							_					
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.9	22.9		9.9	24.5		23.2	23.2		23.2	23.2	
Total Split (s)	51.9	51.9		9.9	61.8		23.2	23.2		23.2	23.2	
Total Split (%)		61.1%			72.7%			27.3%		27.3%		
Maximum Green (s)	47.0	47.0		5.0	56.9		18.0	18.0		18.0	18.0	
Yellow Time (s)	3.4	3.4		3.4	3.4		3.4	3.4		3.4	3.4	
All-Red Time (s)	1.5	1.5		1.5	1.5		1.8	1.8		1.8	1.8	
Lost Time Adjust (s)		-0.9			-0.9			-1.2			-1.2	
Total Lost Time (s)		4.0			4.0			4.0			4.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Min	Min		None	Min		None	None		None	None	
Walk Time (s)	7.0	7.0		110110	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	9.0	9.0			6.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0.0	0.0			0.0		0	0		0	0	
Act Effct Green (s)	Ŭ	37.2			37.2			7.5			7.5	
Actuated g/C Ratio		0.77			0.77			0.15			0.15	
v/c Ratio		0.77			0.77			0.15			0.10	
Control Delay		4.8			4.3			7.0			0.10	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		4.8			4.3			7.0			0.7	
LOS		4.0 A			4.3 A			7.0 A			Ο.7	
		4.8			4.3						0.7	
Approach Delay		4.8			4.3			7.0			0.7	

ı

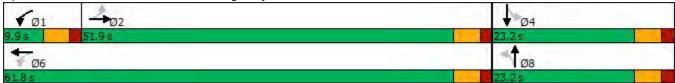
		\rightarrow	*	1	2000		1	T		-	¥	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			Α			Α	
Queue Length 50th (m)		24.3			18.7			0.0			0.0	
Queue Length 95th (m)		45.5			35.5			7.2			0.1	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2933			2970			608			613	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.46			0.38			0.12			0.05	
Intersection Cumment												

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 48.6


Natural Cycle: 70

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.56

Intersection Signal Delay: 4.6 Intersection LOS: A Intersection Capacity Utilization 69.1% ICU Level of Service C

Analysis Period (min) 15

2030 Base

Timing Plan: PM Peak Hour

I

٧.

		\rightarrow	*	1	22000		7			*	+	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			Α			Α	
Queue Length 50th (m)		22.7			18.6			0.0			0.0	
Queue Length 95th (m)		45.3			37.7			8.1			0.7	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		3028			2957			631			645	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.43			0.38			0.12			0.05	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 46.5

Natural Cycle: 70

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.55

Intersection Signal Delay: 4.9 Intersection LOS: A Intersection Capacity Utilization 71.7% ICU Level of Service C

Analysis Period (min) 15

Lane Group		۶	→	*	•	•	•	1	†	~	-	ţ	1
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations		473			473			4			4	
Ideal Flow (vphpl)		12		92	122		2	119		58	13		16
Lane Util. Factor	Future Volume (vph)	12	1245	92	122	1002	2	119	0	58	13	0	16
Ped Bike Factor	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Fit	Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected	Ped Bike Factor		1.00			1.00			0.99			0.99	
Satd. Flow (prot)	Frt		0.990						0.956			0.926	
Fit Permitted	Flt Protected					0.995			0.967			0.978	
Satd. Flow (perm)	Satd. Flow (prot)	0	3312	0	0	3336	0	0	1617	0	0	1583	0
Right Turn on Red	FIt Permitted		0.941			0.610			0.779			0.867	
Said, Flow (RTOR)	Satd. Flow (perm)	0	3117	0	0	2045	0	0	1298	0	0	1398	0
Link Speed (k/h) 50 50 50 50 50 Link Distance (m) 155.9 135.0 181.2 78.6 Travel Time (s) 11.2 9.7 13.0 5.7 Confl. Peds. (#/hr) 9 5 5 9 4 11 11 4 Peak Hour Factor 0.92 0				Yes			Yes			Yes			Yes
Link Distance (m)	Satd. Flow (RTOR)		14						93			93	
Link Distance (m)	Link Speed (k/h)		50			50			50			50	
Travel Time (s)			155.9			135.0			181.2			78.6	
Peak Hour Factor 0.92 0.			11.2			9.7			13.0			5.7	
Shared Lane Traffic (%) Lane Group Flow (yph) 0 1466 0 0 1224 0 0 192 0 0 31 0 0 177 179 179 180 190 1	Confl. Peds. (#/hr)	9		5	5		9	4		11	11		4
Lane Group Flow (vph)	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Lane Group Flow (vph)	Shared Lane Traffic (%)											
Turn Type		,	1466	0	0	1224	0	0	192	0	0	31	0
Protected Phases 2 1 6 8 4 Permitted Phases 2 6 6 8 4 Detector Phase 2 2 1 6 8 8 4 Detector Phase 2 2 1 6 8 8 4 4 Detector Phase 2 2 1 6 8 8 8 4 4 Minimum Initial (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0					pm+pt				NA		Perm		
Permitted Phases 2												4	
Detector Phase 2 2 1 6 8 8 8 4 4		2						8			4		
Minimum Initial (s) 5.0	Detector Phase	2	2		1	6		8	8		4	4	
Minimum Split (s) 22.9 22.9 9.9 24.5 23.2	Switch Phase												
Minimum Split (s) 22.9 22.9 9.9 24.5 23.2	Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Total Split (s) 46.9 46.9 9.9 56.8 23.2 23.2 23.2 23.2 Total Split (%) 58.6% 58.6% 12.4% 71.0% 29.0% 18.0	, ,		22.9		9.9	24.5		23.2	23.2			23.2	
Total Split (%) 58.6% 58.6% 12.4% 71.0% 29.0% 29.0% 29.0% 29.0% Maximum Green (s) 42.0 42.0 5.0 51.9 18.0 18.0 18.0 18.0 Yellow Time (s) 3.4	Total Split (s)	46.9	46.9		9.9	56.8		23.2	23.2		23.2	23.2	
Maximum Green (s) 42.0 42.0 5.0 51.9 18.0 18.0 18.0 18.0 Yellow Time (s) 3.4 <	,	58.6%	58.6%		12.4%	71.0%		29.0%	29.0%		29.0%	29.0%	
All-Red Time (s) 1.5 1.5 1.5 1.5 1.5 1.8 1.8 1.8 1.8 Lost Time Adjust (s) -0.9 -0.9 -0.9 -1.2 -1.2 Total Lost Time (s) 4.0 4.0 4.0 4.0 Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min None Min None None None None None Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 9.0 9.0 6.0 11.0 11.0 11.0 11.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 Act Effet Green (s) 52.7 52.7 12.5 12.5 Actuated g/C Ratio 0.72 0.72 0.17 0.17 V/c Ratio 0.65 0.83 0.64 0.10 Control Delay 7.9 15.5 25.4 0.6 Queue Delay 7.9 15.5 25.4 0.6 LOS A B C A		42.0	42.0		5.0	51.9		18.0	18.0		18.0	18.0	
Lost Time Adjust (s) -0.9 -0.9 -1.2 -1.2 Total Lost Time (s) 4.0 4.0 4.0 4.0 Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 3.	Yellow Time (s)	3.4	3.4		3.4	3.4		3.4	3.4		3.4	3.4	
Total Lost Time (s) 4.0 4.0 4.0 4.0 Lead/Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 <td< td=""><td>All-Red Time (s)</td><td>1.5</td><td>1.5</td><td></td><td>1.5</td><td>1.5</td><td></td><td>1.8</td><td>1.8</td><td></td><td>1.8</td><td>1.8</td><td></td></td<>	All-Red Time (s)	1.5	1.5		1.5	1.5		1.8	1.8		1.8	1.8	
Total Lost Time (s) 4.0 4.0 4.0 4.0 Lead/Lag Lag Lead Lead Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 <td< td=""><td>Lost Time Adjust (s)</td><td></td><td>-0.9</td><td></td><td></td><td>-0.9</td><td></td><td></td><td>-1.2</td><td></td><td></td><td>-1.2</td><td></td></td<>	Lost Time Adjust (s)		-0.9			-0.9			-1.2			-1.2	
Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Vehicle Extension (s) 3.0			4.0			4.0			4.0			4.0	
Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	Lead/Lag	Lag	Lag		Lead								
Vehicle Extension (s) 3.0 7.0					Yes								
Recall Mode Min Min None Min None None None Walk Time (s) 7.0 0 0 0 0 0 0 0 0.1 0.1 7.1 0.17 0.17 0.17 0.17 0.17 0.1 0.0 0.0 0.0 0.0 0.0 0.0		3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Walk Time (s) 7.0 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.0	. ,	Min			None	Min		None	None		None	None	
Flash Dont Walk (s) 9.0 9.0 6.0 11.0 11.0 11.0 11.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Act Effct Green (s) 52.7 52.7 12.5 12.5 Actuated g/C Ratio 0.72 0.72 0.17 0.17 v/c Ratio 0.65 0.83 0.64 0.10 Control Delay 7.9 15.5 25.4 0.6 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 7.9 15.5 25.4 0.6 LOS A B C A												7.0	
Pedestrian Calls (#/hr) 0 <td></td> <td>9.0</td> <td>9.0</td> <td></td> <td></td> <td>6.0</td> <td></td> <td>11.0</td> <td>11.0</td> <td></td> <td>11.0</td> <td>11.0</td> <td></td>		9.0	9.0			6.0		11.0	11.0		11.0	11.0	
Act Effct Green (s) 52.7 52.7 12.5 12.5 Actuated g/C Ratio 0.72 0.72 0.17 0.17 v/c Ratio 0.65 0.83 0.64 0.10 Control Delay 7.9 15.5 25.4 0.6 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 7.9 15.5 25.4 0.6 LOS A B C A	` ,												
Actuated g/C Ratio 0.72 0.72 0.17 0.17 v/c Ratio 0.65 0.83 0.64 0.10 Control Delay 7.9 15.5 25.4 0.6 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 7.9 15.5 25.4 0.6 LOS A B C A													
v/c Ratio 0.65 0.83 0.64 0.10 Control Delay 7.9 15.5 25.4 0.6 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 7.9 15.5 25.4 0.6 LOS A B C A	` ,					0.72							
Control Delay 7.9 15.5 25.4 0.6 Queue Delay 0.0 0.0 0.0 0.0 Total Delay 7.9 15.5 25.4 0.6 LOS A B C A													
Queue Delay 0.0 0.0 0.0 0.0 Total Delay 7.9 15.5 25.4 0.6 LOS A B C A													
Total Delay 7.9 15.5 25.4 0.6 LOS A B C A	-												
LOS A B C A	•												
	Approach Delay		7.9			15.5			25.4			0.6	

		\rightarrow	*	*	2.5038		7			•	*	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			В			С			Α	
Queue Length 50th (m)		46.0			51.6			13.1			0.0	
Queue Length 95th (m)		91.8		7	#137.7			33.3			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2246			1494			411			437	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.65			0.82			0.47			0.07	

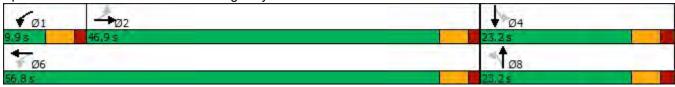
Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 73.2

Natural Cycle: 80

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.83


Intersection Signal Delay: 12.2 Intersection LOS: B
Intersection Capacity Utilization 99.6% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group	WBL	WBR	SBL	SBR	NEL	NER
Approach LOS	D		Е		Е	
Queue Length 50th (m)	60.7	35.7	~186.6	7.7	~113.6	76.4
Queue Length 95th (m)#	#105.8 i	#134.4 7	#260.6	15.8	#177.7 #	[#] 161.6
Internal Link Dist (m)	120.0		169.8		198.3	
Turn Bay Length (m)						
Base Capacity (vph)	335	864	716	1133	441	694
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.83	0.98	1.05	0.26	1.05	1.00

Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 110

Natural Cycle: 110

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 1.05

Intersection Signal Delay: 56.7 Intersection LOS: E
Intersection Capacity Utilization 90.4% ICU Level of Service E

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 3: Westwood St & Kingsway Ave

	→	*	1	•	4	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LUIN	YV DE		NDL	TADIX
Traffic Volume (vph)	514	106	3	589	271	21
Future Volume (vph)	514	106	3	589	271	21
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	55.0	1000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.977		1.00			0.850
Fit Protected	0.977		0.950		0.950	0.000
	1717	0		1765		1500
Satd. Flow (prot)	1717	0	1676	1765	1676	1500
Flt Permitted	1717		0.251	1705	0.950	1500
Satd. Flow (perm)	1717	0	442	1765	1676	1500
Right Turn on Red	0.0	Yes				Yes
Satd. Flow (RTOR)	22					23
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		3	3			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%	o)					
Lane Group Flow (vph)	667	0	3	633	291	23
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases			6			8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	40.1		40.1	40.1	29.9	29.9
Total Split (%)	57.3%				42.7%	
Maximum Green (s)	35.0		35.0	35.0	25.0	25.0
Yellow Time (s)	3.4		33.4	33.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	25.2		25.2	25.2	15.5	15.5
Actuated g/C Ratio	0.51		0.51	0.51	0.31	0.31
v/c Ratio	0.75		0.01	0.70	0.55	0.05
Control Delay	16.2		7.3	14.8	19.8	7.1
Queue Delay	0.0		0.0	0.0	0.0	0.0
Queue Delay	0.0		0.0	0.0	0.0	0.0

	\rightarrow	*	1	10.00	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Total Delay	16.2		7.3	14.8	19.8	7.1
LOS	В		Α	В	В	Α
Approach Delay	16.2			14.8	18.9	
Approach LOS	В			В	В	
Queue Length 50th (m)	40.0		0.1	37.8	21.0	0.0
Queue Length 95th (m)	99.9		1.3	92.2	51.5	4.3
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1320		338	1352	940	851
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.51		0.01	0.47	0.31	0.03

Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 49.3

Natural Cycle: 40

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.75 Intersection Signal Delay: 16.1 Intersection Capacity Utilization 57.9%

Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

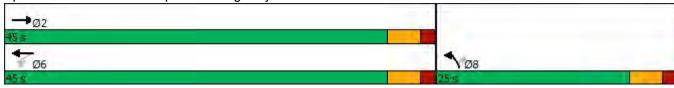
	→	•	1	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		ሻ	<u> </u>	7	7
Traffic Volume (vph)	532	109	3	610	281	32
Future Volume (vph)	532	109	3	610	281	32
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	55.0	1000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		- 0	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.977		1.00			0.850
Fit Protected	0.311		0.950		0.950	0.000
	1717	0	1676	1765	1676	1500
Satd. Flow (prot) Flt Permitted	1717	U		1705	0.950	1500
	1717		0.248	1765		1500
Satd. Flow (perm)	1717	0	437	1765	1676	1500
Right Turn on Red	0.5	Yes				Yes
Satd. Flow (RTOR)	25					34
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		3	3			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%	o)					
Lane Group Flow (vph)	689	0	3	656	302	34
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases			6			8
Detector Phase	2		6	6	8	8
Switch Phase	_					
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	45.0		45.0	45.0	25.0	25.0
Total Split (%)	64.3%				35.7%	
Maximum Green (s)	39.9		39.9	39.9	20.1	20.1
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	27.0		27.0	27.0	15.2	15.2
Actuated g/C Ratio	0.53		0.53	0.53	0.30	0.30
v/c Ratio				0.33	0.60	0.30
	0.75		0.01			
Control Delay	15.0		6.3	13.8	23.0	7.3
Queue Delay	0.0		0.0	0.0	0.0	0.0

	\rightarrow	*	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Total Delay	15.0		6.3	13.8	23.0	7.3
LOS	В		Α	В	С	Α
Approach Delay	15.0			13.8	21.4	
Approach LOS	В			В	С	
Queue Length 50th (m)	41.7		0.1	39.7	23.5	0.0
Queue Length 95th (m)	93.2		1.1	86.1	60.0	5.9
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1405		356	1439	748	688
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.49		0.01	0.46	0.40	0.05
Intersection Summary						

Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 50.8


Natural Cycle: 50

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.75 Intersection Signal Delay: 15.8 Intersection Capacity Utilization 59.7%

Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

	→	*	1	•	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4		ሻ	<u> </u>	ሻ	7
Traffic Volume (vph)	561	115	3	627	290	32
Future Volume (vph)	561	115	3	627	290	32
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	55.0	1000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		- 0	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.977		1.00			0.850
Fit Protected	0.311		0.950		0.950	0.050
	1717	0	1676	1765	1676	1500
Satd. Flow (prot)	1717	U		1705		1300
Flt Permitted	1717		0.223	1765	0.950	1500
Satd. Flow (perm)	1717	0	393	1765	1676	1500
Right Turn on Red	00	Yes				Yes
Satd. Flow (RTOR)	26					34
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		3	3			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%	o)					
Lane Group Flow (vph)	727	0	3	674	312	34
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases			6			8
Detector Phase	2		6	6	8	8
Switch Phase	_					
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	45.0		45.0	45.0	25.0	25.0
Total Split (%)	64.3%				35.7%	
Maximum Green (s)	39.9		39.9	39.9	20.1	20.1
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	28.4		28.4	28.4	15.8	15.8
Actuated g/C Ratio	0.54		0.54	0.54	0.30	0.30
v/c Ratio	0.34			0.34	0.62	0.30
			0.01			
Control Delay	16.4		6.3	14.3	24.2	7.4
Queue Delay	0.0		0.0	0.0	0.0	0.0

	\rightarrow	*	1	•	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Total Delay	16.4		6.3	14.3	24.2	7.4
LOS	В		Α	В	С	Α
Approach Delay	16.4			14.2	22.5	
Approach LOS	В			В	С	
Queue Length 50th (m)	48.0		0.1	43.7	26.2	0.0
Queue Length 95th (m)	102.8		1.1	90.3	62.0	5.9
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1359		310	1391	719	663
Starvation Cap Reductr			0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.53		0.01	0.48	0.43	0.05
Intersection Summary						
Area Type:	Other					
Cycle Length: 70						

Actuated Cycle Length: 52.8

Natural Cycle: 55

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.78 Intersection Signal Delay: 16.8 Intersection Capacity Utilization 62.2%

Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

6: Maple St & Kingsway Ave Splits and Phases:

	→	•	1	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1→	LDIN	YVDL		NDL Š	NDIX
Traffic Volume (vph)	547	112	3	641	295	34
Future Volume (vph)	547	112	3	641	295	34
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	55.0	1000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.977		1.00			0.850
Fit Protected	0.977		0.950		0.950	0.000
	1717	0		1765		1500
Satd. Flow (prot)	1717	0	1676	1765	1676	1500
Flt Permitted	4747		0.233	1705	0.950	4500
Satd. Flow (perm)	1717	0	411	1765	1676	1500
Right Turn on Red	c=	Yes				Yes
Satd. Flow (RTOR)	25					37
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		3	3			
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%	o)					
Lane Group Flow (vph)	•	0	3	689	317	37
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases			6			8
Detector Phase	2		6	6	8	8
Switch Phase			<u> </u>	<u> </u>		<u> </u>
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	45.0		45.0	45.0	25.0	25.0
. , ,					35.7%	
Total Split (%)	64.3%					
Maximum Green (s)	39.9		39.9	39.9	20.1	20.1
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	27.7		27.7	27.7	15.8	15.8
Actuated g/C Ratio	0.53		0.53	0.53	0.30	0.30
v/c Ratio	0.33		0.01	0.33	0.63	0.30
Control Delay	16.0		6.3	15.1	23.9	7.1
Queue Delay	0.0		0.0	0.0	0.0	0.0

	\rightarrow	*	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Total Delay	16.0		6.3	15.1	23.9	7.1
LOS	В		Α	В	С	Α
Approach Delay	16.0			15.0	22.2	
Approach LOS	В			В	С	
Queue Length 50th (m)	45.6		0.1	45.1	26.1	0.0
Queue Length 95th (m)	97.9		1.1	94.0	63.2	6.1
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1372		327	1405	730	674
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.52		0.01	0.49	0.43	0.05
Intersection Summary						

Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 52.1


Natural Cycle: 50

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.77 Intersection Signal Delay: 16.9 Intersection Capacity Utilization 61.5%

Intersection LOS: B
ICU Level of Service B

Analysis Period (min) 15

	→	*	1	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		ሻ	<u> </u>	*	7
Traffic Volume (vph)	607	124	3	671	311	34
Future Volume (vph)	607	124	3	671	311	34
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	7000	0.0	55.0	.000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		-	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.977		1.00			0.850
Flt Protected	0.011		0.950		0.950	0.000
Satd. Flow (prot)	1717	0	1676	1765	1676	1500
Flt Permitted	17 17	0	0.193	1703	0.950	1000
Satd. Flow (perm)	1717	0	340	1765	1676	1500
Right Turn on Red	17.17	Yes	340	1700	1070	Yes
	26	168				7 es
Satd. Flow (RTOR)	26			E 0	EO	3/
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)	0.00	3	3	0.00	0.00	0.00
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%	•	_	_			
Lane Group Flow (vph)		0	3	722	334	37
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases			6			8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	46.0		46.0	46.0	24.0	24.0
Total Split (%)	65.7%		65.7%	65.7%	34.3%	34.3%
Maximum Green (s)	40.9		40.9	40.9	19.1	19.1
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag	7.0		7.0	7.0	7.0	7.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
· ,	3.0 Min					
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0		015	0.1.5	40.1	40.4
Act Effct Green (s)	31.3		31.3	31.3	16.4	16.4
Actuated g/C Ratio	0.56		0.56	0.56	0.29	0.29
v/c Ratio	0.81		0.02	0.74	0.68	0.08
Control Delay	17.9		6.0	14.8	28.4	7.6
Queue Delay	0.0		0.0	0.0	0.0	0.0

	\rightarrow	*	1		1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Total Delay	17.9		6.0	14.8	28.4	7.6
LOS	В		Α	В	С	Α
Approach Delay	17.9			14.7	26.4	
Approach LOS	В			В	С	
Queue Length 50th (m)	61.1		0.1	53.8	32.9	0.0
Queue Length 95th (m)	114.9		1.1	97.4	#75.0	6.2
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1309		258	1340	638	594
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.60		0.01	0.54	0.52	0.06

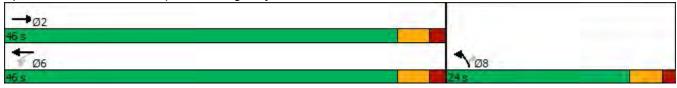
Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 56.3

Natural Cycle: 55

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.81 Intersection Signal Delay: 18.3 Intersection Capacity Utilization 66.6%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lane Group
Lane Configurations 1
Traffic Volume (vph) 596 122 4 700 322 37 Future Volume (vph) 596 122 4 700 322 37 Ideal Flow (vphpl) 1800 500
Future Volume (vph) 596 122 4 700 322 37 Ideal Flow (vphpl) 1800 1
Ideal Flow (vphpl)
Storage Length (m)
Storage Lanes
Taper Length (m) 7.5 7.5 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Ped Bike Factor 1.00
Lane Util. Factor
Ped Bike Factor
Fit Protected 0.950 0.950 0.950 Satd. Flow (prot) 1717 0 1676 1765 1676 1500 Flt Permitted 0.195 0.950 Satd. Flow (perm) 1717 0 344 1765 1676 1500 Right Turn on Red Yes Yes Satd. Flow (RTOR) 25 40 Link Speed (k/h) 50 50 50 Link Distance (m) 261.1 211.7 342.5 Travel Time (s) 18.8 15.2 24.7 Confl. Peds. (#/hr) 3 3 3 3 9 30.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Shared Lane Traffic (%) Lane Group Flow (vph) 772 0 4 753 346 40 40 40 40 40 40 40
Fit Protected
Satd. Flow (prot) 1717 0 1676 1765 1676 1500 Flt Permitted 0.195 0.950 0.950 Satd. Flow (perm) 1717 0 344 1765 1676 1500 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 25 40 40 Link Speed (k/h) 50 50 50 Link Speed (k/h) 30 3 3 29 30.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 </td
Tit Permitted
Satd. Flow (perm) 1717 0 344 1765 1676 1500 Right Turn on Red Satd. Flow (RTOR) 25 40 40 Link Speed (k/h) 50 50 50 Link Distance (m) 261.1 211.7 342.5 Travel Time (s) 18.8 15.2 24.7 Confl. Peds. (#/hr) 3 3 15.2 24.7 Confl. Peds. (#/hr) 3 3 15.2 24.7 Confl. Peds. (#/hr) 3 3 0.93
Right Turn on Red Yes Yes Satd. Flow (RTOR) 25 40 Link Speed (k/h) 50 50 50 Link Distance (m) 261.1 211.7 342.5 Travel Time (s) 18.8 15.2 24.7 Confl. Peds. (#/hr) 3 3 3 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 Shared Lane Traffic (%) 2 6 8 40 Turn Type NA Perm NA Protested Phases 2 6 8 Permitted Phases 2 6 8 8 Detector Phase 2 6 8 8 Switch Phase 8 8 8 8 Minimum Initial (s) 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green
Satd. Flow (RTOR) 25 40 Link Speed (k/h) 50 50 50 Link Distance (m) 261.1 211.7 342.5 Travel Time (s) 18.8 15.2 24.7 Confl. Peds. (#/hr) 3 3 3 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Shared Lane Traffic (%) Lane Group Flow (vph) 772 0 4 753 346 40 Turn Type NA Perm NA Prot Perm Protected Phases 2 6 8 8 Permitted Phases 6 8 8 Detector Phase 2 6 6 8 8 Switch Phase 2 6 6 8 8 Switch Phase 2 6 6 8 8 Switch Phase 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (s) 3.4 3.4
Link Speed (k/h) 50 Link Distance (m) 261.1 211.7 342.5 Travel Time (s) 18.8 15.2 24.7 Confl. Peds. (#/hr) 3 3 3 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Shared Lane Traffic (%) Lane Group Flow (vph) 772 0 4 753 346 40 Turn Type NA Perm NA Prot Perm Protected Phases 2 6 8 Permitted Phases 6 8 Detector Phase 2 6 6 8 8 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Link Distance (m) 261.1 211.7 342.5 Travel Time (s) 18.8 15.2 24.7 Confl. Peds. (#/hr) 3 3 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Shared Lane Traffic (%) 10.0 0 4 753 346 40 40 Turn Type NA Perm NA Prote Perm NA Perm Perm Perm Perm NA Perm Pe
Travel Time (s) 18.8 15.2 24.7 Confl. Peds. (#/hr) 3 3 Peak Hour Factor 0.93 0.96 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 0.00
Confl. Peds. (#/hr) 3 3 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 Shared Lane Traffic (%) Lane Group Flow (vph) 772 0 4 753 346 40 Turn Type NA Perm NA Protected Phases 2 6 8 Permitted Phases 2 6 6 8 Detector Phase 2 6 6 8 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) <td< td=""></td<>
Peak Hour Factor 0.93 0.94
Shared Lane Traffic (%) Lane Group Flow (vph) 772 0 4 753 346 40 Turn Type NA Perm NA Prot Perm Protected Phases 2 6 8 Detector Phase 2 6 6 8 Switch Phase 8 8 Minimum Initial (s) 10.0 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.
Lane Group Flow (vph) 772 0 4 753 346 40 Turn Type NA Perm NA Prot Perm Protected Phases 2 6 8 8 Detector Phase 2 6 6 8 8 Switch Phase 8 8 8 8 Switch Phase 2 6 6 8 8 Minimum Initial (s) 10.0 10.0 7.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 25.0 25.0 25.0 Total Split (s) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adj
Turn Type NA Perm NA Prot Perm Protected Phases 2 6 8 Detector Phase 2 6 8 8 Switch Phase 8 8 8 Minimum Initial (s) 10.0 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag
Protected Phases 2 6 8 Permitted Phases 6 8 Detector Phase 2 6 6 8 Switch Phase 8 Minimum Initial (s) 10.0 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 <t< td=""></t<>
Permitted Phases 6 8 Detector Phase 2 6 6 8 8 Switch Phase 8 8 8 Minimum Initial (s) 10.0 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead-Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min </td
Detector Phase 2 6 6 8 8 Switch Phase Minimum Initial (s) 10.0 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 10.0 10.0 10.0 10.0 10.0
Switch Phase Minimum Initial (s) 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 30.8 30.8 30.8 16.9
Minimum Initial (s) 10.0 10.0 7.0 7.0 Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 10.0 Pedestrian Calls (#/hr) 0 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55
Minimum Split (s) 23.1 15.1 15.1 11.9 11.9 Total Split (s) 45.0 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 10.0 Pedestrian Calls (#/hr) 0 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Total Split (s) 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Total Split (s) 45.0 45.0 25.0 25.0 Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Total Split (%) 64.3% 64.3% 64.3% 35.7% 35.7% Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Maximum Green (s) 39.9 39.9 39.9 20.1 20.1 Yellow Time (s) 3.4 3.4 3.4 3.4 3.4 All-Red Time (s) 1.7 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Yellow Time (s) 3.4 3.5 3.5 3.0 3.0 3.0 3.0 9.0 9.09 9 -0.9 -0
All-Red Time (s) 1.7 1.7 1.5 1.5 Lost Time Adjust (s) -1.1 -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.50 0.30
Lost Time Adjust (s) -1.1 -1.1 -0.9 -0.9 Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.50 0.30
Total Lost Time (s) 4.0 4.0 4.0 4.0 4.0 Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.30 0.30
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Lead-Lag Optimize? Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Recall Mode Min Min Min None None Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Recall Mode Min Min Min None None Walk Time (s) 8.0
Walk Time (s) 8.0 Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Flash Dont Walk (s) 10.0 Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Pedestrian Calls (#/hr) 0 Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Act Effct Green (s) 30.8 30.8 30.8 16.9 16.9 Actuated g/C Ratio 0.55 0.55 0.55 0.30 0.30
Actuated g/C Ratio 0.55 0.55 0.30 0.30
v/c Ratio 0.81 0.02 0.78 0.69 0.08
Control Delay 18.4 6.5 16.9 27.7 7.2
Queue Delay 0.0 0.0 0.0 0.0 0.0

	\rightarrow	*	1		1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Total Delay	18.4		6.5	16.9	27.7	7.2
LOS	В		Α	В	С	Α
Approach Delay	18.4			16.9	25.6	
Approach LOS	В			В	С	
Queue Length 50th (m)	60.6		0.2	59.0	33.9	0.0
Queue Length 95th (m)	115.8		1.4	109.9	#71.2	6.4
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1287		256	1316	670	624
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.60		0.02	0.57	0.52	0.06

Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 56.3

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.81 Intersection Signal Delay: 19.2 Intersection Capacity Utilization 66.5%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	→	*	1	•	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		ሻ	↑	ሻ	7
Traffic Volume (vph)	656	134	4	730	338	37
Future Volume (vph)	656	134	4	730	338	37
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)		0.0	55.0	.500	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	•
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.977					0.850
Flt Protected	0.511		0.950		0.950	0.000
Satd. Flow (prot)	1717	0	1676	1765	1676	1500
Flt Permitted	17.17	U	0.158	1703	0.950	1300
Satd. Flow (perm)	1717	0	279	1765	1676	1500
· ,	17.17	Yes	219	1703	1070	Yes
Right Turn on Red	06	res				
Satd. Flow (RTOR)	26				5 0	40
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)	2.55	3	3	0.55	2 2 2	0.55
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Shared Lane Traffic (%	•			_		
Lane Group Flow (vph)		0	4	785	363	40
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases			6			8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	46.0		46.0	46.0	24.0	24.0
Total Split (%)	65.7%				34.3%	
Maximum Green (s)	40.9		40.9	40.9	19.1	19.1
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?	2.2		2.2	0.0	2.0	0.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	34.6		34.6	34.6	17.5	17.5
Actuated g/C Ratio	0.57		0.57	0.57	0.29	0.29
v/c Ratio	0.86		0.03	0.78	0.75	0.09
Control Delay	21.3		6.2	16.6	33.0	7.4
Queue Delay	0.0		0.0	0.0	0.0	0.0
					2.3	

	\rightarrow	*	1		1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Total Delay	21.3		6.2	16.6	33.0	7.4
LOS	С		Α	В	С	Α
Approach Delay	21.3			16.6	30.4	
Approach LOS	С			В	С	
Queue Length 50th (m)	79.0		0.2	69.2	43.4	0.0
Queue Length 95th (m):	#161.2		1.3	114.1	#85.0	6.6
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1237		200	1264	581	546
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.69		0.02	0.62	0.62	0.07

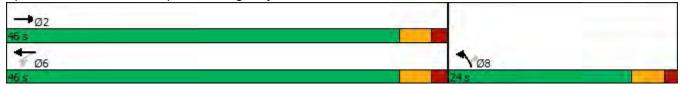
Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 60.5

Natural Cycle: 55

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.86 Intersection Signal Delay: 21.3 Intersection Capacity Utilization 71.5%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	-	*	1	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LDIK	N DE	<u>₩</u>	i i i	TVDIX
Traffic Volume (vph)	744	289	17	616	262	32
Future Volume (vph)	744	289	17	616	262	32
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	55.0	1000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00	1.00	1.00	1.00	1.00
Frt	0.962					0.850
FIt Protected	0.902		0.950		0.950	0.000
	1681	0	1676	176F	1676	1500
Satd. Flow (prot)	1001	0		1765		1500
Fit Permitted	1604		0.108	1705	0.950	1500
Satd. Flow (perm)	1681	0	191	1765	1676	1500
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	41					35
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		7	7			
Confl. Bikes (#/hr)		1				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)					
Lane Group Flow (vph)		0	18	670	285	35
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases	_		6			8
Detector Phase	2		6	6	8	8
Switch Phase	_					
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	40.1		40.1	40.1	29.9	29.9
	57.3%				42.7%	
Total Split (%)						
Maximum Green (s)	35.0		35.0	35.0	25.0	25.0
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	36.9		36.9	36.9	16.3	16.3
. ,	0.60		0.60	0.60	0.27	0.27
Actuated g/C Ratio						
v/c Ratio	1.09		0.16	0.63	0.64	0.08
Control Delay	73.5		11.4	12.4	26.5	6.5

	-	*	1	100000	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	73.5		11.4	12.4	26.5	6.5
LOS	Е		В	В	С	Α
Approach Delay	73.5			12.3	24.3	
Approach LOS	Е			В	С	
Queue Length 50th (m)			8.0	43.6	29.1	0.0
Queue Length 95th (m)	#258.7		5.2	99.6	50.4	5.3
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1029		115	1063	712	657
Starvation Cap Reductr	n 0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	1.09		0.16	0.63	0.40	0.05

Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 61.2

Natural Cycle: 80

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 1.09 Intersection Signal Delay: 46.4

Intersection Signal Delay: 46.4 Intersection LOS: D
Intersection Capacity Utilization 82.1% ICU Level of Service E

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	-	7	•	←	4	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		ሻ	<u> </u>	ሻ	7
Traffic Volume (vph)	770	300	18	640	271	33
Future Volume (vph)	770	300	18	640	271	33
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	. 300	0.0	55.0	.500	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	•
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00	1.00	1.00	1.00	1.00
Frt	0.962					0.850
Flt Protected	0.002		0.950		0.950	0.000
Satd. Flow (prot)	1682	0	1676	1765	1676	1500
Flt Permitted	1002	U	0.082	1703	0.950	1300
Satd. Flow (perm)	1682	0	145	1765	1676	1500
	1002	Yes	140	1703	1070	Yes
Right Turn on Red	6.4	168				
Satd. Flow (RTOR)	64			EO	FO	36
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8	7	-	15.2	24.7	
Confl. Peds. (#/hr)		7	7			
Confl. Bikes (#/hr)	0.00	1	0.00	0.00	0.00	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%		-		200	-0	
Lane Group Flow (vph)		0	20	696	295	36
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases			6			8
Detector Phase	2		6	6	8	8
Switch Phase						
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	52.2		52.2	52.2	17.8	17.8
Total Split (%)	74.6%		74.6%	74.6%	25.4%	25.4%
Maximum Green (s)	47.1		47.1	47.1	12.9	12.9
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag			0			
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0		171111	IVIIII	140116	None
Flash Dont Walk (s)	10.0					
· ,						
Pedestrian Calls (#/hr)	0		10.6	10.6	12.0	12.0
Act Effet Green (s)	48.6		48.6	48.6	13.8	13.8
Actuated g/C Ratio	0.69		0.69	0.69	0.20	0.20
v/c Ratio	0.98		0.20	0.57	0.90	0.11
Control Delay	35.5		9.6	7.9	60.4	9.8

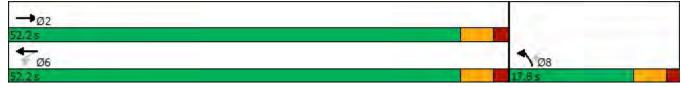
	-	*	1	10.00	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	35.5		9.6	7.9	60.4	9.8
LOS	D		Α	Α	Е	Α
Approach Delay	35.5			7.9	54.9	
Approach LOS	D			Α	D	
Queue Length 50th (m)	122.6		8.0	40.5	40.0	0.0
Queue Length 95th (m);	#239.6		4.3	65.5	#83.0	7.0
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1181		99	1218	328	322
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.98		0.20	0.57	0.90	0.11

Area Type: Other

Cycle Length: 70

Actuated Cycle Length: 70.4

Natural Cycle: 90


Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.98 Intersection Signal Delay: 29.5

Intersection Signal Delay: 29.5 Intersection LOS: C
Intersection Capacity Utilization 84.8% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	-	*	1	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1>		*	^	*	7
Traffic Volume (vph)	796	310	18	669	284	33
Future Volume (vph)	796	310	18	669	284	33
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	. 500	0.0	55.0	.500	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00	1.00	1.00	1.00	1.00
Frt	0.962					0.850
Fit Protected	0.902		0.950		0.950	0.050
	1600	0		1765		1500
Satd. Flow (prot)	1680	0	1676	1765	1676	1500
Flt Permitted	4000		0.062	4705	0.950	4500
Satd. Flow (perm)	1680	0	109	1765	1676	1500
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	54					36
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		7	7			
Confl. Bikes (#/hr)		1				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1202	0	20	727	309	36
Turn Type	NA	-	Perm	NA	Prot	Perm
Protected Phases	2		. 51111	6	8	1 51111
Permitted Phases			6	0	- 0	8
	2		6	6	0	8
Detector Phase			О	О	8	ğ
Switch Phase	40.0		40.0	40.0	7.0	7.0
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	68.0		68.0	68.0	22.0	22.0
Total Split (%)	75.6%		75.6%		24.4%	24.4%
Maximum Green (s)	62.9		62.9	62.9	17.1	17.1
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag	7.0		7.0	7.0	-7.∪	7.0
Lead-Lag Optimize?						
	2.0		2.0	2.0	2.0	3.0
Vehicle Extension (s)	3.0		3.0	3.0	3.0	
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	64.0		64.0	64.0	18.0	18.0
Actuated g/C Ratio	0.71		0.71	0.71	0.20	0.20
v/c Ratio	0.99		0.26	0.58	0.92	0.11
Control Delay	38.5		14.4	8.7	70.3	11.2

	-	*	1	100000	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	38.5		14.4	8.7	70.3	11.2
LOS	D		В	Α	Е	В
Approach Delay	38.5			8.8	64.1	
Approach LOS	D			Α	Е	
Queue Length 50th (m)	177.3		1.1	55.0	55.6	0.0
Queue Length 95th (m):	#305.3		6.0	82.9	#105.3	7.9
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1210		77	1255	335	328
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.99		0.26	0.58	0.92	0.11

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.99 Intersection Signal Delay: 32.7 Intersection Capacity Utilization 87.6%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	-	*	1	•	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		YV DE	<u>₩</u>	NOL.	7
Traffic Volume (vph)	810	315	19	669	284	35
Future Volume (vph)	810	315	19	669	284	35
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	55.0	1000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	ı
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00	1.00	1.00	1.00	1.00
Frt	0.962					0.850
FIt Protected	0.902		0.950		0.950	0.000
	1679	0	1676	1765	1676	1500
Satd. Flow (prot) Flt Permitted	10/9	U		1700	0.950	1500
	1670		0.063	1705		1500
Satd. Flow (perm)	1679	0	111	1765	1676	1500
Right Turn on Red	F 4	Yes				Yes
Satd. Flow (RTOR)	51					38
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		7	7			
Confl. Bikes (#/hr)		1				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)					
Lane Group Flow (vph)	1222	0	21	727	309	38
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2			6	8	
Permitted Phases			6			8
Detector Phase	2		6	6	8	8
Switch Phase	_					
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	76.6		76.6	76.6	23.4	23.4
Total Split (%)	76.6%				23.4%	
Maximum Green (s)	71.5		71.5	71.5	18.5	18.5
\ ,						
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	72.6		72.6	72.6	19.4	19.4
Actuated g/C Ratio	0.73		0.73	0.73	0.19	0.19
v/c Ratio	0.79		0.76	0.73	0.15	0.13
Control Delay	38.3		14.1	8.5	80.2	11.8
Contion Delay	30.3		14.1	ა.ა	00.2	11.0

	-	*	1		1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	38.3		14.1	8.5	80.2	11.8
LOS	D		В	Α	F	В
Approach Delay	38.3			8.7	72.8	
Approach LOS	D			Α	Е	
Queue Length 50th (m)	202.9		1.2	58.7	62.9	0.0
Queue Length 95th (m):	#337.2		6.0	86.3	#115.9	8.8
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1232		80	1281	325	321
Starvation Cap Reductn	0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	0.99		0.26	0.57	0.95	0.12

Intersection Summary

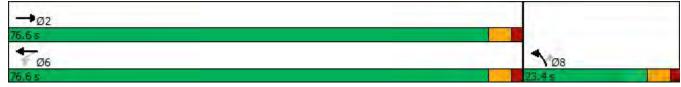
Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 100

Natural Cycle: 100

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.99 Intersection Signal Delay: 33.9


Intersection Signal Delay: 33.9 Intersection LOS: C
Intersection Capacity Utilization 88.7% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 6: Maple St & Kingsway Ave

	-	*	1	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		NDE 1	<u>₩</u>	i i	7
Traffic Volume (vph)	860	335	19	729	311	35
Future Volume (vph)	860	335	19	729	311	35
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	55.0	1000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00	1.00	1.00	1.00	1.00
Frt	0.99					0.850
Fit Protected	0.902		0.950		0.950	0.650
	1677	0		1765		1500
Satd. Flow (prot)	1677	0	1676	1765	1676	1500
Flt Permitted	4077		0.045	4705	0.950	4500
Satd. Flow (perm)	1677	0	79	1765	1676	1500
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	44					31
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		7	7			
Confl. Bikes (#/hr)		1				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1299	0	21	792	338	38
Turn Type	NA		Perm	NA	Prot	Perm
Protected Phases	2		. 51111	6	8	, 5,,,,,
Permitted Phases			6	- 0	- 3	8
Detector Phase	2		6	6	8	8
Switch Phase			U	U	0	O
	10.0		10.0	10.0	7.0	7.0
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	92.0		92.0	92.0	28.0	28.0
Total Split (%)	76.7%				23.3%	
Maximum Green (s)	86.9		86.9	86.9	23.1	23.1
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode	Min		Min	Min	None	None
Walk Time (s)	8.0		171111	IVIIII	140116	140116
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0		00.0	00.0	04.0	04.0
Act Effct Green (s)	88.0		88.0	88.0	24.0	24.0
Actuated g/C Ratio	0.73		0.73	0.73	0.20	0.20
v/c Ratio	1.05		0.37	0.61	1.01	0.12
Control Delay	55.9		26.8	10.2	99.5	17.3

	\rightarrow	*	1	•	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	55.9		26.8	10.2	99.5	17.3
LOS	Е		С	В	F	В
Approach Delay	55.9			10.7	91.2	
Approach LOS	Е			В	F	
Queue Length 50th (m)	~347.2		1.7	83.2	~85.6	1.4
Queue Length 95th (m)	#432.7		11.1	116.6	#147.7	11.2
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1241		57	1294	335	324
Starvation Cap Reductr	ո 0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	1.05		0.37	0.61	1.01	0.12

Intersection Summary

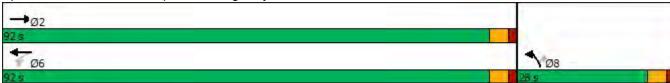
Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Natural Cycle: 120

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 1.05 Intersection Signal Delay: 46.5


Intersection Signal Delay: 46.5 Intersection LOS: D
Intersection Capacity Utilization 94.4% ICU Level of Service F

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 6: Maple St & Kingsway Ave

2030 Base

Timing Plan: PM Peak Hour

	7	\rightarrow	*	1	20.00	-	1	T		-	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α			Α			В			Α	
Queue Length 50th (m)		40.4			29.4			8.2			0.0	
Queue Length 95th (m)		85.6			63.4			31.0			0.0	
Internal Link Dist (m)		131.9			111.0			157.2			54.6	
Turn Bay Length (m)												
Base Capacity (vph)		2675			2599			506			547	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.53			0.42			0.37			0.05	
		•			0.42			•			0.05	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 56.9

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.70

Intersection Signal Delay: 9.6 Intersection LOS: A Intersection Capacity Utilization 89.5% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: Dixon St & Kingsway Ave

	-	*	1	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		YV DE	<u> </u>	i i i	TVDIX
Traffic Volume (vph)	933	363	20	790	337	38
Future Volume (vph)	933	363	20	790	337	38
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800
Storage Length (m)	1000	0.0	55.0	1000	0.0	50.0
Storage Lanes		0.0	1		1	1
Taper Length (m)		U	7.5		7.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00	1.00	1.00	1.00	1.00
Frt	0.99					0.850
Fit Protected	0.962		0.950		0.950	0.650
	1677	0		1765		1500
Satd. Flow (prot)	1677	0	1676	1765	1676	1500
Flt Permitted	4077		0.045	4705	0.950	4500
Satd. Flow (perm)	1677	0	79	1765	1676	1500
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	45					30
Link Speed (k/h)	50			50	50	
Link Distance (m)	261.1			211.7	342.5	
Travel Time (s)	18.8			15.2	24.7	
Confl. Peds. (#/hr)		7	7			
Confl. Bikes (#/hr)		1				
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1409	0	22	859	366	41
Turn Type	NA		Perm	NA	Prot	
Protected Phases	2		. 51111	6	8	. 51111
Permitted Phases			6	U	U	8
Detector Phase	2		6	6	8	8
	2		O	О	ď	Ö
Switch Phase	40.0		40.0	40.0	7.0	7.0
Minimum Initial (s)	10.0		10.0	10.0	7.0	7.0
Minimum Split (s)	23.1		15.1	15.1	11.9	11.9
Total Split (s)	93.0		93.0	93.0	27.0	27.0
Total Split (%)	77.5%				22.5%	
Maximum Green (s)	87.9		87.9	87.9	22.1	22.1
Yellow Time (s)	3.4		3.4	3.4	3.4	3.4
All-Red Time (s)	1.7		1.7	1.7	1.5	1.5
Lost Time Adjust (s)	-1.1		-1.1	-1.1	-0.9	-0.9
Total Lost Time (s)	4.0		4.0	4.0	4.0	4.0
Lead/Lag	1.0		1.0	1.0	1.0	1.0
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0
Recall Mode						None
	Min		Min	Min	None	none
Walk Time (s)	8.0					
Flash Dont Walk (s)	10.0					
Pedestrian Calls (#/hr)	0					
Act Effct Green (s)	89.0		89.0	89.0	23.0	23.0
Actuated g/C Ratio	0.74		0.74	0.74	0.19	0.19
v/c Ratio	1.12		0.38	0.66	1.14	0.13
Control Delay	84.0		27.2	10.8	137.7	19.4

	-	*	1	-	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Queue Delay	0.0		0.0	0.0	0.0	0.0
Total Delay	84.0		27.2	10.8	137.7	19.4
LOS	F		С	В	F	В
Approach Delay	84.0			11.2	125.8	
Approach LOS	F			В	F	
Queue Length 50th (m)	~401.2		1.7	92.9	~105.9	2.3
Queue Length 95th (m)	#486.7		12.1	131.5	#166.8	12.4
Internal Link Dist (m)	237.1			187.7	318.5	
Turn Bay Length (m)			55.0			50.0
Base Capacity (vph)	1255		58	1309	321	311
Starvation Cap Reductn	n 0		0	0	0	0
Spillback Cap Reductn	0		0	0	0	0
Storage Cap Reductn	0		0	0	0	0
Reduced v/c Ratio	1.12		0.38	0.66	1.14	0.13

Intersection Summary

Area Type: Other

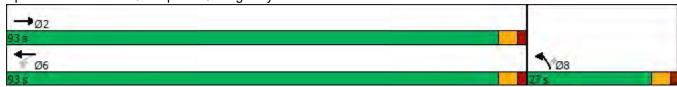
Cycle Length: 120

Actuated Cycle Length: 120

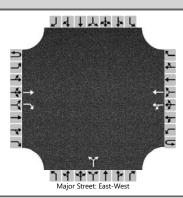
Natural Cycle: 120

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 1.14

Intersection Signal Delay: 66.5 Intersection LOS: E
Intersection Capacity Utilization 101.7% ICU Level of Service G

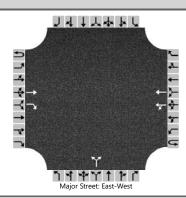

Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


95th percentile volume exceeds capacity, queue may be longer.

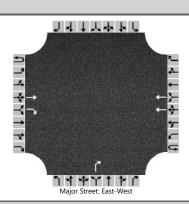
Queue shown is maximum after two cycles.

Splits and Phases: 6: Maple St & Kingsway Ave

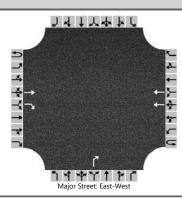

HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2020	North/South Street	Gately Avenue						
Time Analyzed	Base	Peak Hour Factor	0.93						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description 7163 - Affordable Housing Project TIS									

Vehicle Volumes and Adj	ustme	nts															
Approach		Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0	
Configuration			Т	R		LT	Т				LR						
Volume (veh/h)			599	9		9	851			20		21					
Percent Heavy Vehicles (%)						2				2		2					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized		١	Мо														
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						4.1				7.5		6.9					
Critical Headway (sec)						4.14				6.84		6.94					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.22				3.52		3.32					
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)						10					44						
Capacity, c (veh/h)						927					267						
v/c Ratio						0.01					0.17						
95% Queue Length, Q ₉₅ (veh)						0.0					0.6						
Control Delay (s/veh)						8.9					21.1						
Level of Service (LOS)						А					С						
Approach Delay (s/veh)					0.2			21.1									
Approach LOS										(C						

Generated: 1/31/2020 10:59:28 AM

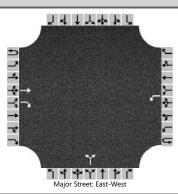

HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2022	North/South Street	Gately Avenue						
Time Analyzed	Base	Peak Hour Factor	0.93						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description 7163 - Affordable Housing Project TIS									

Vehicle Volumes and Adj	ustme	nts															
Approach		Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0	
Configuration			Т	R		LT	Т				LR						
Volume (veh/h)			623	6		6	885			19		19					
Percent Heavy Vehicles (%)						2				2		2					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized		١	10														
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						4.1				7.5		6.9					
Critical Headway (sec)						4.14				6.84		6.94					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.22				3.52		3.32					
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)						6					41				П		
Capacity, c (veh/h)						909					253						
v/c Ratio						0.01					0.16						
95% Queue Length, Q ₉₅ (veh)						0.0					0.6						
Control Delay (s/veh)						9.0					22.0						
Level of Service (LOS)						А					С						
Approach Delay (s/veh)					0.1			22.0									
Approach LOS										(C						

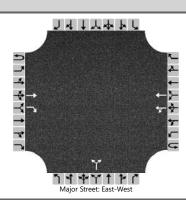

Generated: 1/31/2020 11:00:45 AM

HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2022	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (RIRO & Dixon)	Peak Hour Factor	0.93						
Intersection Orientation East-West Analysis Time Period (hrs) 0.25									
Project Description 7163 - Affordable Housing Project TIS									

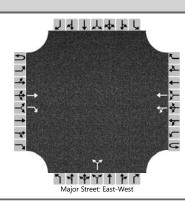
Vehicle Volumes and Adj	ustme	nts															
Approach		Eastk	ound			Westl	bound		Northbound					Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0	
Configuration			Т	R			Т					R					
Volume (veh/h)			623	39			934					51					
Percent Heavy Vehicles (%)												2					
Proportion Time Blocked																	
Percent Grade (%)										(0						
Right Turn Channelized		١	lo							Ν	lo						
Median Type Storage				Undi	vided												
Critical and Follow-up He	eadwa	ys															
Base Critical Headway (sec)												6.9					
Critical Headway (sec)												6.94					
Base Follow-Up Headway (sec)												3.3					
Follow-Up Headway (sec)												3.32					
Delay, Queue Length, and	l Leve	l of S	ervice														
Flow Rate, v (veh/h)												55					
Capacity, c (veh/h)												399					
v/c Ratio												0.14					
95% Queue Length, Q ₉₅ (veh)												0.5					
Control Delay (s/veh)												15.5					
Level of Service (LOS)								С			С						
Approach Delay (s/veh)								15.5									
Approach LOS								С									


HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	СТЅ	Jurisdiction	Port Coquitlam, BC							
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2022	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (RIRO)	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description 7163 - Affordable Housing Project TIS										

Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			Westl	oound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			T	R			Т					R				
Volume (veh/h)			623	63			934					140				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	10							Ν	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т											151				
Capacity, c (veh/h)												399				
v/c Ratio												0.38				
95% Queue Length, Q ₉₅ (veh)	Ì											1.7				
Control Delay (s/veh)												19.4				
Level of Service (LOS)									С			С				
Approach Delay (s/veh)								19.4								
Approach LOS								С								

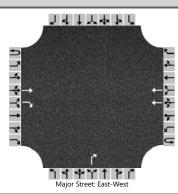

Generated: 5/4/2020 9:33:23 AM

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2022	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (WBLT & NBLT)	Peak Hour Factor	0.93						
Intersection Orientation	0.25								
Project Description 7163 - Affordable Housing Project TIS									

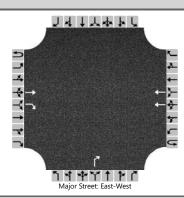

Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastl	oound			Westbound				Northbound				South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	1	0	0		0	1	0		0	0	0
Configuration			Т	R		L					LR					
Volume (veh/h)			623	33		30				89		51				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized		١	No													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T					4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)	Т					32					151					
Capacity, c (veh/h)						891					422					
v/c Ratio						0.04					0.36					
95% Queue Length, Q ₉₅ (veh)						0.1					1.6					
Control Delay (s/veh)						9.2					18.2					
Level of Service (LOS)						A			С							
Approach Delay (s/veh)		9.2						18.2								
Approach LOS								С								

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2022	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (Existing Lane)	Peak Hour Factor	0.93						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description 7163 - Affordable Housing Project TIS									

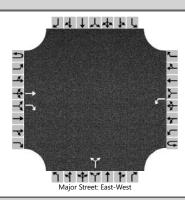
Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0
Configuration			Т	R		LT	Т				LR					
Volume (veh/h)			623	33		30	885			89		51				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized		١	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.14				6.84		6.94				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, and	l Leve	l of S	ervice													
Flow Rate, v (veh/h)						32					151					
Capacity, c (veh/h)						887					205					
v/c Ratio						0.04					0.73					
95% Queue Length, Q ₉₅ (veh)						0.1					4.8					
Control Delay (s/veh)						9.2					59.7					
Level of Service (LOS)					A			F								
Approach Delay (s/veh)					0.6			59.7								
Approach LOS								F								


HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2025	North/South Street	Gately Avenue							
Time Analyzed	Base	Peak Hour Factor	0.93							
Intersection Orientation	0.25									
Project Description 7163 - Affordable Housing Project TIS										

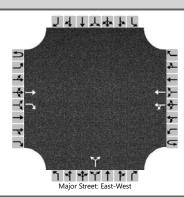
Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0
Configuration			Т	R		LT	Т				LR					
Volume (veh/h)			659	0		0	936			0		0				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.14				6.84		6.94				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)						0					0					
Capacity, c (veh/h)						884										
v/c Ratio						0.00										
95% Queue Length, Q ₉₅ (veh)						0.0										
Control Delay (s/veh)						9.1										
Level of Service (LOS)					A											
Approach Delay (s/veh)					0.0											
Approach LOS																


Generated: 1/31/2020 11:06:08 AM

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	СТЅ	Jurisdiction	Port Coquitlam, BC							
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2025	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (RIRO & Dixon)	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description 7163 - Affordable Housing Project TIS										

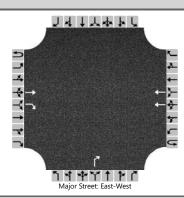

Vehicle Volumes and Ad	justme	nts														
Approach	Т	Eastk	oound			Westl	bound		Northbound					South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			Т	R			Т					R				
Volume (veh/h)			677	38			980					51				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized		١	10							Ν	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	Т											6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т											55				
Capacity, c (veh/h)												365				
v/c Ratio												0.15				
95% Queue Length, Q ₉₅ (veh)												0.5				
Control Delay (s/veh)												16.6				
Level of Service (LOS)												С				
Approach Delay (s/veh)								16.6								
Approach LOS									С							

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2025	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (RIRO)	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description 7163 - Affordable Housing Project TIS										

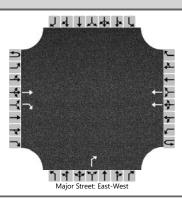

Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			Т	R			Т					R				
Volume (veh/h)			659	93			980					222				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized		١	No							Ν	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Τ											239				
Capacity, c (veh/h)												376				
v/c Ratio												0.64				
95% Queue Length, Q ₉₅ (veh)	Ì											4.2				
Control Delay (s/veh)												29.8				
Level of Service (LOS)												D				
Approach Delay (s/veh)								29.8								
Approach LOS								D								

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2025	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (WBLT & NBLT)	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	7163 - Affordable Housing Project TIS									

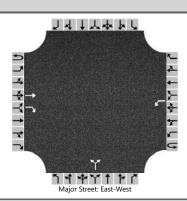
Vehicle Volumes and Adju	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	1	0	0		0	1	0		0	0	0
Configuration			Т	R		L					LR					
Volume (veh/h)			659	49		44				153		69				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		Ν	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up Hea	adwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, and	Leve	of Se	ervice													
Flow Rate, v (veh/h)						47					239					
Capacity, c (veh/h)						849					393					
v/c Ratio						0.06					0.61					
95% Queue Length, Q ₉₅ (veh)						0.2					3.9					
Control Delay (s/veh)						9.5					27.4					
Level of Service (LOS)						А					D					
Approach Delay (s/veh)						9.5			27.4							
Approach LOS									D							


HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2030	North/South Street	Gately Avenue							
Time Analyzed	Base	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description 7163 - Affordable Housing Project TIS										

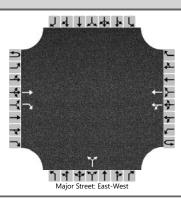
Vehicle Volumes and Adj	ustine															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0
Configuration			T	R		LT	Т				LR					
Volume (veh/h)			719	0		0	1021			0		0				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.14				6.84		6.94				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						0					0					
Capacity, c (veh/h)						836										
v/c Ratio						0.00										
95% Queue Length, Q ₉₅ (veh)					Ì	0.0										
Control Delay (s/veh)						9.3										
Level of Service (LOS)						A										
Approach Delay (s/veh)					0.0						•		•			
Approach LOS																


Generated: 1/31/2020 11:11:12 AM

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2030	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (RIRO & Dixon)	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	7163 - Affordable Housing Project TIS									

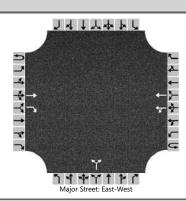

Approach	T	Facth	ound			Westl	oound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	T	R	U L T R			U L T R			В	
	+				-				U				0		-	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration	_		Т	R			Т					R				
Volume (veh/h)			737	38			1065					51				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		N	10							N	О					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т											55				
Capacity, c (veh/h)												331				
v/c Ratio												0.17				
95% Queue Length, Q ₉₅ (veh)												0.6				
Control Delay (s/veh)												18.0				
Level of Service (LOS)												С				
Approach Delay (s/veh)								18.0								
Approach Delay (s/ven)											,.0					

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2030	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (RIRO)	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description 7163 - Affordable Housing Project TIS										


Vehicle Volumes and Ad	justme	nts														
Approach		Eastk	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			Т	R			Т					R				
Volume (veh/h)			719	93			1021					222				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	No.							Ν	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T											6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Τ											239				
Capacity, c (veh/h)												341				
v/c Ratio												0.70				
95% Queue Length, Q ₉₅ (veh)	Ì											5.0				
Control Delay (s/veh)												36.9				
Level of Service (LOS)									E			Е				
Approach Delay (s/veh)								36.9								
Approach LOS								E								

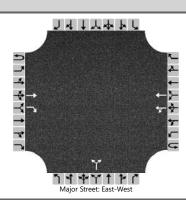
HCS7 Two-Way Stop-Control Report									
General Information									
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	AM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2030	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (WBLT & NBLT)	Peak Hour Factor	0.93						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	7163 - Affordable Housing Project TIS								

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	1	0	0		0	1	0		0	0	0
Configuration			Т	R		L					LR					
Volume (veh/h)			719	49		44				153		69				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	10													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T					47					239					
Capacity, c (veh/h)						803					359					
v/c Ratio						0.06					0.66					
95% Queue Length, Q ₉₅ (veh)						0.2					4.6					
Control Delay (s/veh)						9.8					32.8					
Level of Service (LOS)						A			D							
Approach Delay (s/veh)		9.8					32.8									
Approach LOS						D										

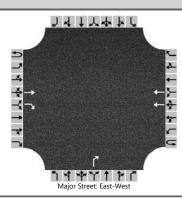

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2020	North/South Street	Gately Avenue							
Time Analyzed	Base	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description 7163 - Affordable Housing Project TIS										

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastl	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0
Configuration			Т	R		LT	Т				LR					
Volume (veh/h)			1022	16		12	866			6		11				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	10													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.14				6.84		6.94				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						13					18					
Capacity, c (veh/h)						614					141					
v/c Ratio						0.02					0.13					
95% Queue Length, Q ₉₅ (veh)					Ì	0.1					0.4					
Control Delay (s/veh)						11.0					34.3					
Level of Service (LOS)					В			D								
Approach Delay (s/veh)					0.4			34.3					•			
Approach LOS								D								

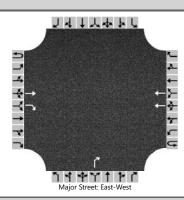
Generated: 1/31/2020 11:34:38 AM


HCS7 Two-Way Stop-Control Report									
General Information									
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2022	North/South Street	Gately Avenue						
Time Analyzed	Base	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description 7163 - Affordable Housing Project TIS									

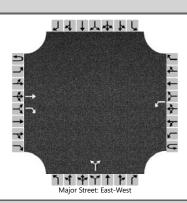
Vehicle Volumes and Adjus	stme	nts														
Approach		Eastk	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0
Configuration			Т	R		LT	T				LR					
Volume (veh/h)			1063	14		10	901			4		6				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		N	10													
Median Type Storage				Undi	vided											
Critical and Follow-up Hea	adwa	ys														
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.14				6.84		6.94				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)						11					11					
Capacity, c (veh/h)						591					125					
v/c Ratio						0.02					0.09					
95% Queue Length, Q ₉₅ (veh)						0.1					0.3					
Control Delay (s/veh)						11.2					36.4					
Level of Service (LOS)				В			E									
Approach Delay (s/veh)				0.3			36.4									
Approach LOS							E									


Generated: 1/31/2020 11:35:14 AM

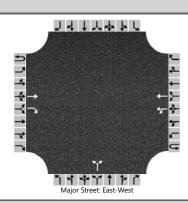
HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2022	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (No Change)	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	7163 - Affordable Housing Project TIS								


Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0
Configuration			Т	R		LT	Т				LR					
Volume (veh/h)			1063	78		48	901			47		39				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	10													
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.14				6.84		6.94				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, and	l Leve	l of S	ervice													
Flow Rate, v (veh/h)						52					93					
Capacity, c (veh/h)						556					88					
v/c Ratio						0.09					1.07					
95% Queue Length, Q ₉₅ (veh)						0.3					6.3					
Control Delay (s/veh)						12.1					202.2					
Level of Service (LOS)					В			F								
Approach Delay (s/veh)					1.7			202.2								
Approach LOS								F								

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2022	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (RIRO & Dixon)	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	7163 - Affordable Housing Project TIS								

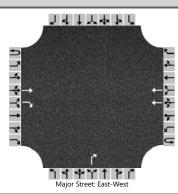

Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			Т	R			Т					R				
Volume (veh/h)			1063	88			953					39				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	10							N	0					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)												42				
Capacity, c (veh/h)												190				
v/c Ratio												0.22				
95% Queue Length, Q ₉₅ (veh)												0.8				
Control Delay (s/veh)												29.4				
Level of Service (LOS)									D							
Approach Delay (s/veh)								29.4								
Approach LOS		Ì						D								

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	СТЅ	Jurisdiction	Port Coquitlam, BC							
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2022	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (RIRO)	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description 7163 - Affordable Housing Project TIS										

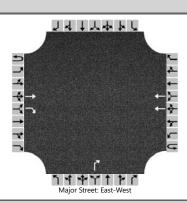

Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			Т	R			Т					R				
Volume (veh/h)			1063	126			953					86				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized		Ν	lo							Ν	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)												93				
Capacity, c (veh/h)												190				
v/c Ratio												0.49				
95% Queue Length, Q ₉₅ (veh)					Ì							2.4				
Control Delay (s/veh)												41.2				
Level of Service (LOS)								E			Е					
Approach Delay (s/veh)								41.2								
Approach LOS								E								

HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2022	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (WBLT & NBLT)	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	7163 - Affordable Housing Project TIS									

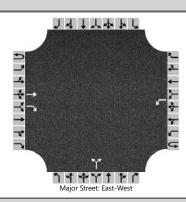
Vehicle Volumes and Adjustments																
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	1	0	0		0	1	0		0	0	0
Configuration			Т	R		L					LR					
Volume (veh/h)			1063	78		48				47		39				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						52					93					
Capacity, c (veh/h)						560					214					
v/c Ratio						0.09					0.44					
95% Queue Length, Q ₉₅ (veh)						0.3					2.1					
Control Delay (s/veh)						12.1					34.3					
Level of Service (LOS)						В					D					
Approach Delay (s/veh)		12.1			2.1	34.3										
Approach LOS								D								


HCS7 Two-Way Stop-Control Report										
General Information Site Information										
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2025	North/South Street	Gately Avenue							
Time Analyzed	Base	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description 7163 - Affordable Housing Project TIS										

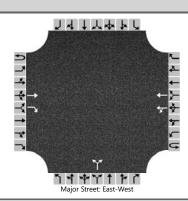
Vehicle Volumes and Adju	stme	nts														
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0
Configuration			Т	R		LT	Т				LR					
Volume (veh/h)			1124	0		0	953			0		0				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	10													
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.14				6.84		6.94				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)						0					0					
Capacity, c (veh/h)						565										
v/c Ratio						0.00										
95% Queue Length, Q ₉₅ (veh)						0.0										
Control Delay (s/veh)						11.4										
Level of Service (LOS)					В											
Approach Delay (s/veh)					0.0											
Approach LOS																


Generated: 1/31/2020 11:37:54 AM

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2025	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (RIRO & Dixon)	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	roject Description 7163 - Affordable Housing Project TIS								

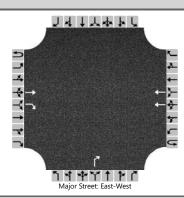

Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			Т	R			Т					R				
Volume (veh/h)			1141	102			1036					50				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized		١	10							N	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T											6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т											54				
Capacity, c (veh/h)												166				
v/c Ratio												0.33				
95% Queue Length, Q ₉₅ (veh)												1.3				
Control Delay (s/veh)												36.8				
Level of Service (LOS)												Е				
Approach Delay (s/veh)								36.8								
Approach LOS							E									

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2025	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (RIRO)	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Project Description 7163 - Affordable Housing Project TIS								

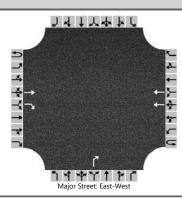

Vehicle Volumes and Adjust	stme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			Т	R			Т					R				
Volume (veh/h)			1124	223			1036					153				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		Ν	lo							Ν	o					
Median Type Storage				Undi	vided											
Critical and Follow-up Hea	adwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, and	Leve	l of S	ervice													
Flow Rate, v (veh/h)												166				
Capacity, c (veh/h)												171				
v/c Ratio												0.97				
95% Queue Length, Q ₉₅ (veh)												7.6				
Control Delay (s/veh)												116.0				
Level of Service (LOS)									F							
Approach Delay (s/veh)							116.0									
Approach LOS							F									

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	СТЅ	Jurisdiction	Port Coquitlam, BC						
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2025	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (WBLT & NBLT)	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description 7163 - Affordable Housing Project TIS									

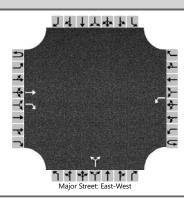
Vehicle Volumes and Adju	ıstme	nts														
Approach		Eastb	ound			Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	1	0	0		0	1	0		0	0	0
Configuration			Т	R		L					LR					
Volume (veh/h)			1124	140		83				86		67				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		Ν	10													
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, and	l Leve	l of S	ervice													
Flow Rate, v (veh/h)						90					166					
Capacity, c (veh/h)						498					183					
v/c Ratio						0.18					0.91					
95% Queue Length, Q ₉₅ (veh)						0.7					6.9					
Control Delay (s/veh)						13.8					96.8					
Level of Service (LOS)					В			F								
Approach Delay (s/veh)					13.8			96.8								
Approach LOS								F								


HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2030	North/South Street	Gately Avenue							
Time Analyzed	Base	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	t Description 7163 - Affordable Housing Project TIS									

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	1	0		0	0	0
Configuration			T	R		LT	Т				LR					
Volume (veh/h)			1226	0		0	1039			0		0				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	10													
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)						4.1				7.5		6.9				
Critical Headway (sec)						4.14				6.84		6.94				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)						0					0					
Capacity, c (veh/h)						513										
v/c Ratio						0.00										
95% Queue Length, Q ₉₅ (veh)						0.0										
Control Delay (s/veh)						12.0										
Level of Service (LOS)						В										
Approach Delay (s/veh)					0.0											
Approach LOS																


Generated: 1/31/2020 11:40:35 AM

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2030	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (RIRO & Dixon)	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description 7163 - Affordable Housing Project TIS									


Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			Westl	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0
Configuration			Т	R			Т					R				
Volume (veh/h)			1243	102			1122					50				
Percent Heavy Vehicles (%)												2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	Мо							Ν	lo					
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)												6.9				
Critical Headway (sec)												6.94				
Base Follow-Up Headway (sec)												3.3				
Follow-Up Headway (sec)												3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T											54				
Capacity, c (veh/h)												140				
v/c Ratio												0.39				
95% Queue Length, Q ₉₅ (veh)												1.7				
Control Delay (s/veh)												46.2				
Level of Service (LOS)									E							
Approach Delay (s/veh)								46.2								
Approach LOS								E								

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	RC	Intersection	Gately Ave & Kingsway Ave						
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC						
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue						
Analysis Year	2030	North/South Street	Gately Avenue						
Time Analyzed	Base+Site (RIRO)	Peak Hour Factor	0.92						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Project Description 7163 - Affordable Housing Project TIS								

Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	0	2	0		0	0	1		0	0	0	
Configuration			Т	R			Т					R					
Volume (veh/h)			1226	223			1122					153					
Percent Heavy Vehicles (%)												2					
Proportion Time Blocked																	
Percent Grade (%)										0							
Right Turn Channelized		No									No						
Median Type Storage		Undivided															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)												6.9					
Critical Headway (sec)												6.94					
Base Follow-Up Headway (sec)												3.3					
Follow-Up Headway (sec)												3.32					
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)	T											166					
Capacity, c (veh/h)												144					
v/c Ratio												1.16					
95% Queue Length, Q ₉₅ (veh)												9.4					
Control Delay (s/veh)												184.2					
Level of Service (LOS)												F					
Approach Delay (s/veh)								184.2									
Approach LOS								F									

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	RC	Intersection	Gately Ave & Kingsway Ave							
Agency/Co.	CTS	Jurisdiction	Port Coquitlam, BC							
Date Performed	PM Peak Hr	East/West Street	Kingsway Avenue							
Analysis Year	2030	North/South Street	Gately Avenue							
Time Analyzed	Base+Site (WBLT & NBLT)	Peak Hour Factor	0.92							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	7163 - Affordable Housing Project TIS									

Vehicle Volumes and Adj	ustme	nts															
Approach	Eastbound				Westbound				Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	1	0	1	0	0		0	1	0		0	0	0	
Configuration			Т	R		L					LR						
Volume (veh/h)			1226	140		83				86		67					
Percent Heavy Vehicles (%)						2				2		2					
Proportion Time Blocked																	
Percent Grade (%)										0							
Right Turn Channelized		No															
Median Type Storage		Undivided															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)						4.1				7.1		6.2					
Critical Headway (sec)						4.12				6.42		6.22					
Base Follow-Up Headway (sec)						2.2				3.5		3.3					
Follow-Up Headway (sec)						2.22				3.52		3.32					
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)	T					90					166						
Capacity, c (veh/h)						452					154						
v/c Ratio						0.20					1.08						
95% Queue Length, Q ₉₅ (veh)						0.7					8.7						
Control Delay (s/veh)						14.9					153.4						
Level of Service (LOS)						В					F						
Approach Delay (s/veh)					14.9			153.4									
Approach LOS									F								